用gulp计算合金弹性常数_1. 弹性系统的基本解

本节是弹性力学的数学理论的第一节。为了应用奇异积分理论,第一步就是得到最简单的均匀且各向同性弹性体的基本解。

在弹性力学中,Lame 系统是描述均匀且各向同性弹性体达到平衡状态时的位移受
本构关系影响的一组偏微分方程,在

中为

71eb1481d6d7d49031214bb9fdd32e99.png

其中

是弹性介质所在区域,
是表示弹性性能的Lame常数(在均匀且各向同性的弹性介质中,只需要两个常数就可以表示弹性性能;在非各向同性的介质中,则需要21个;在非均匀介质中,这些常数要变成函数),
是外力,
是弹性体的位移场。

这里只考虑三维空间中的弹性理论(其它维度是类似的),设

是有界连通
区域(嵌入
中的
流形),为了得到系统(1-1)的解,首先需要计算出其基本解,也就是满足
,其中
是Dirac分布。

定理 1 . 满足

的基本解

edf33fb10c40823ec1f0db3d32178575.png

证明 .

求散度得到
,故可令
满足

3d29a682c6460867c320ec8da257097b.png

其中

是Laplace算子
的基本解,即

cc1207321567b73dc87a2af38fa5ced0.png

联立

,得到

1b306c1c9b34df22b4ac3504e7e0d44b.png

接下来分两步验证,当

时,只需验证对任何
,有

52e638cf1350e9eecb5603daf955bcbf.png

,由Green恒等式,有

64f299899c9c5c39cc51c9379a82dec1.png

,得到

5cb065562b29f6ff6f6df4975d730382.png

另一方面,有

2e3230a83645fa373162e9587d699efa.png

结合上述两式,我们就验证了结论。

时,只需验证对任何
,有

fb0ca87b17396e362f9979c80370ccd1.png

使用和

时相同的技巧,不难验证上式,故我们得到了基本解
的表达式。

注:基本解

的物理意义是在原点施加三个正交方向且单位大小的力,得到的三个位移场排列成的矩阵。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值