Doc2Vec,Word2Vec文本相似度 初体验。

参考资料 :
https://radimrehurek.com/gensim/models/word2vec.html

接上篇 :

import jieba
all_list = jieba.cut(xl['工作内容'][0:6],cut_all=True)
print(all_list)
every_one = xl['工作内容'].apply(lambda x:jieba.cut(x))
import traceback
def filtered_punctuations(token_list):
    try:
        punctuations = [' ', '\n', '\t', ',', '.', ':', ';', '?', '(', ')', '[', ']', '&', '!', '*', '@', '#', '$', '%',':',
                        '/','\xa0','。',';','、']
        token_list_without_punctuations = [word for word in token_list
                                                         if word not in punctuations]
        #print "[INFO]: filtered_punctuations is finished!"
        return token_list_without_punctuations

    except Exception as e:
        print (traceback.print_exc())

from gensim.models import Doc2Vec,Word2Vec
import gensim
def list_crea(everyone):
    list_word = []
    for k in everyone:
        fenci= filtered_punctuations(k)
        list_word.append(fenci)

    return list_word

aa_word = list_crea(every_one)

print(type(aa_word))  
#aa_word 是 个 嵌套的list   [[1,2,3], [4,5,6], [7,8,9]]
model = Word2Vec(aa_word, min_count=1)    # 训练模型,参考英文官网,在上面

say_vector = model['java']  # get vector for word

model.similarity('计算', '计算机') 

Doc2Vec,Word2Vec文本相似度  初体验。

转载于:https://blog.51cto.com/13000661/2121671

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值