BZOJ4039 : 集会

将曼哈顿距离转化为切比雪夫距离,即:

$|x_1-x_2|+|y_1-y_2|=\max(|(x_1+y_1)-(x_2+y_2)|,|(x_1-y_1)-(x_2-y_2)|)$

那么每个点能接受的范围是一个正方形,对正方形求交,若交集为空那么显然无解。

然后在交对应矩形中三分套三分即可,用二分查找配合前缀和加速查询。

这样有一个问题,就是选出的点不一定是整点,那么只需要在那个点附近枚举整点即可。

时间复杂度$O(n\log n+\log^3n)$。

 

#include<cstdio>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=100010,K=1;
const ll inf=1LL<<60;
int n,i;ll D,xl,xr,yl,yr,ans,X,Y;
struct P{ll x,y,a,b;}a[N];
struct DS{
  ll a[N],s[N];
  void init(){
    sort(a+1,a+n+1);
    for(int i=1;i<=n;i++)s[i]=s[i-1]+a[i];
  }
  inline ll ask(ll x){
    int l=1,r=n,t=0,mid;
    while(l<=r)if(a[mid=(l+r)>>1]<=x)l=(t=mid)+1;else r=mid-1;
    return x*(t*2-n)-s[t]*2+s[n];
  }
}Tx,Ty;
inline void read(ll&a){char c;while(!(((c=getchar())>='0')&&(c<='9')));a=c-'0';while(((c=getchar())>='0')&&(c<='9'))(a*=10)+=c-'0';}
inline ll dis(ll x,ll y){return Tx.ask(x+y)+Ty.ask(x-y);}
inline ll cal(ll x,ll y){
  ll t=dis(x,y);
  if(t<ans)ans=t,X=x,Y=y;
  return t;
}
inline ll solvey(ll x,ll yl,ll yr){
  ll t=inf,len,m1,m2,s1,s2;
  while(yl<=yr){
    len=(yr-yl)/3;
    s1=cal(x,m1=yl+len),s2=cal(x,m2=yr-len);
    if(s1<s2)t=min(t,s1),yr=m2-1;else t=min(t,s2),yl=m1+1;
  }
  return t;
}
inline void solvex(ll xl,ll xr,ll yl,ll yr){
  ll len,m1,m2,s1,s2;
  while(xl<=xr){
    len=(xr-xl)/3;
    s1=solvey(m1=xl+len,yl,yr),s2=solvey(m2=xr-len,yl,yr);
    if(s1<s2)xr=m2-1;else xl=m1+1;
  }
}
int main(){
  while(~scanf("%d",&n)){
    if(!n)return 0;
    for(i=1;i<=n;i++){
      read(a[i].x),read(a[i].y);
      a[i].a=a[i].x+a[i].y;
      a[i].b=a[i].x-a[i].y;
    }
    read(D);
    xl=yl=-inf,xr=yr=inf;
    for(i=1;i<=n;i++){
      xl=max(xl,a[i].a-D);
      xr=min(xr,a[i].a+D);
      yl=max(yl,a[i].b-D);
      yr=min(yr,a[i].b+D);
    }
    if(xl>xr||yl>yr){puts("impossible");continue;}
    for(i=1;i<=n;i++)Tx.a[i]=a[i].x*2,Ty.a[i]=a[i].y*2;
    Tx.init(),Ty.init();
    ans=inf;
    solvex(xl,xr,yl,yr);
    ans=inf;
    for(ll x=X-K;x<=X+K;x++)for(ll y=Y-K;y<=Y+K;y++){
      if(x<xl||x>xr)continue;
      if(y<yl||y>yr)continue;
      if((x+y)%2)continue;
      ans=min(ans,dis(x,y));
    }
    printf("%lld\n",ans/2);
  }
  return 0;
}

  

使用优化算法,以优化VMD算法的惩罚因子惩罚因子 (α) 和分解层数 (K)。 1、将量子粒子群优化(QPSO)算法与变分模态分解(VMD)算法结合 VMD算法背景: VMD算法是一种自适应信号分解算法,主要用于分解信号为不同频率带宽的模态。 VMD的关键参数包括: 惩罚因子 α:控制带宽的限制。 分解层数 K:决定分解出的模态数。 QPSO算法背景: 量子粒子群优化(QPSO)是一种基于粒子群优化(PSO)的一种改进算法,通过量子行为模型增强全局搜索能力。 QPSO通过粒子的量子行为使其在搜索空间中不受位置限制,从而提高算法的收敛速度与全局优化能力。 任务: 使用QPSO优化VMD中的惩罚因子 α 和分解层数 K,以获得信号分解的最佳效果。 计划: 定义适应度函数:适应度函数根据VMD分解的效果来定义,通常使用重构信号的误差(例如均方误差、交叉熵等)来衡量分解的质量。 初始化QPSO粒子:定义粒子的位置和速度,表示 α 和 K 两个参数。初始化时需要在一个合理的范围内为每个粒子分配初始位置。 执行VMD分解:对每一组 α 和 K 参数,运行VMD算法分解信号。 更新QPSO粒子:使用QPSO算法更新粒子的状态,根据适应度函数调整粒子的搜索方向和位置。 迭代求解:重复QPSO的粒子更新步骤,直到满足终止条件(如适应度函数达到设定阈值,或最大迭代次数)。 输出优化结果:最终,QPSO算法会返回一个优化的 α 和 K,从而使VMD分解效果最佳。 2、将极光粒子(PLO)算法与变分模态分解(VMD)算法结合 PLO的优点与适用性 强大的全局搜索能力:PLO通过模拟极光粒子的运动,能够更高效地探索复杂的多峰优化问题,避免陷入局部最优。 鲁棒性强:PLO在面对高维、多模态问题时有较好的适应性,因此适合海上风电时间序列这种非线性、多噪声的数据。 应用场景:PLO适合用于优化VMD参数(α 和 K),并将其用于风电时间序列的预测任务。 进一步优化的建议 a. 实现更细致的PLO更新策略,优化极光粒子的运动模型。 b. 将PLO优化后的VMD应用于真实的海上风电数据,结合LSTM或XGBoost等模型进行风电功率预测。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值