The maximum subarray problem is the task of finding the contiguous subarray within a one-dimensional array of numbers (containing at least one positive number) which has the largest sum. For example, for the sequence of values −2, 1, −3, 4, −1, 2, 1, −5, 4; the contiguous subarray with the largest sum is 4, −1, 2, 1, with sum 6. --from wiki
下面我们分析四种算法的时间性能,由于运行时间相差较大,我们分成两组进行对比:
环境:ubuntu 12.04
时间单位:ms
时间性能:presume that the input is preread
第一组:输入数据元素个数2000
1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
/************************************************************************* > File Name: algorithm1.c > Author: Simba > Mail: dameng34@163.com > Created Time: 2012年12月24日 星期一 22时41分56秒 ************************************************************************/ #include<stdio.h> #include<stdlib.h> #include<time.h> #include<sys/time.h> int maxsubsum1(const int a[], int n) { int thissum, maxsum, i, j, k; maxsum = 0; for (i = 0; i < n; i++) { for (j = i; j < n; j++) { thissum = 0; for (k = i; k <= j; k++) thissum += a[k]; if (thissum > maxsum) maxsum = thissum; } } return maxsum; } int maxsubsum2(const int a[], int n) { int thissum, maxsum, i, j; maxsum = 0; for (i = 0; i < n; i++) { thissum = 0; for (j = i; j < n; j++) { thissum += a[j]; if (thissum > maxsum) maxsum = thissum; } } return maxsum; } long GetTickCount(void) { struct timeval tv; gettimeofday(&tv, NULL); return (tv.tv_sec * 1000 + tv.tv_usec / 1000); } int main(void) { int i, n = 2000; int *ptr = malloc(sizeof(int) * n); srand(time(NULL)); for (i = 0; i < n; i++) ptr[i] = rand() % 50 - 25; // adopt algorithm 1 unsigned int utimecost = GetTickCount(); int result = maxsubsum1(ptr, n); utimecost = GetTickCount() - utimecost; printf("max subsequence sum is %d, time cost %d\n", result, utimecost); // adopt algorithm 2 utimecost = GetTickCount(); result = maxsubsum2(ptr, n); utimecost = GetTickCount() - utimecost; printf("max subsequence sum is %d, time cost %d\n", result, utimecost); free(ptr); return 0; } |
max subsequence sum is 275, time cost 4423
max subsequence sum is 275, time cost 6
第二组:输入数据元素个数 1000000
1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
/************************************************************************* > File Name: divide_conquer.c > Author: Simba > Mail: dameng34@163.com > Created Time: 2012年12月24日 星期一 23时24分41秒 ************************************************************************/ #include<stdio.h> #include<stdlib.h> #include<time.h> #include <sys/time.h> /* struct timeval, gettimeofday(), struct itimerval, setitimer(), ITIMER_REAL */ int divide_conquer(int arr[], int start, int end) { if(start == end) return (arr[start] > 0 ? arr[start] : 0); int mid = (start + end) / 2; int max_left = divide_conquer(arr, start, mid); int max_right = divide_conquer(arr, mid + 1, end); // mid subsequence int max_left_border = 0; int tmp_sum = 0; int i; for(i = mid; i >= start; i--) { tmp_sum += arr[i]; if(tmp_sum > max_left_border) max_left_border = tmp_sum; } int max_right_border = 0; tmp_sum = 0; for(i = mid + 1; i <= end; i++) { tmp_sum += arr[i]; if(tmp_sum > max_right_border) max_right_border = tmp_sum; } int max_mid = max_left_border + max_right_border; // max subsequence int iresult = max_left; if(max_right > iresult) iresult = max_right; if(max_mid > iresult) iresult = max_mid; return iresult; } int maxsubsum3(const int a[], int n) { int j, thissum, maxsum; thissum = maxsum = 0; for (j = 0; j < n; j++) { thissum += a[j]; if (thissum > maxsum) maxsum = thissum; else if (thissum < 0) thissum = 0; } return maxsum; } long GetTickCount(void) { struct timeval tv; gettimeofday(&tv, NULL); return (tv.tv_sec * 1000 + tv.tv_usec / 1000); } int main(void) { int i, n = 1000000; int *ptr = malloc(sizeof(int) * n); srand(time(NULL)); for (i = 0; i < n; i++) ptr[i] = rand() % 50 - 25; // adopt divide_conquer algorithm unsigned int utimecost = GetTickCount(); int result = divide_conquer(ptr, 0, n - 1); utimecost = GetTickCount() - utimecost; printf("max subsequence sum is %d, time cost %d\n", result, utimecost); // adopt algorithm 3 utimecost = GetTickCount(); result = maxsubsum3(ptr, n); utimecost = GetTickCount() - utimecost; printf("max subsequence sum is %d, time cost %d\n", result, utimecost); free(ptr); return 0; } |
max subsequence sum is 2410, time cost 217
max subsequence sum is 2410, time cost 4
分析:
在《data structure and algorithm analysis in c》中有对这四种算法时间性能的分析,依次下来分别是O(n^3),O(n^2),O(nlogn),O(n),即使我们在第二组输入的元素个数是第一组的500倍,第二组的运行时间都要比第一组的小。下图2-2是作者写书时测试的时间列表,显然现在的机器运行得更快。