# 【C/C++】Maximum Subsequence Sum/最大子列和问题

#### 7-1 Maximum Subsequence Sum（25 分）

Given a sequence of  integers { , ...,  }. A continuous subsequence is defined to be { , ...,  } where . The Maximum Subsequence is the continuous subsequence which has the largest sum of its elements. For example, given sequence { -2, 11, -4, 13, -5, -2 }, its maximum subsequence is { 11, -4, 13 } with the largest sum being 20.

Now you are supposed to find the largest sum, together with the first and the last numbers of the maximum subsequence.

### Input Specification:

Each input file contains one test case. Each case occupies two lines. The first line contains a positive integer  (). The second line contains  numbers, separated by a space.

### Output Specification:

For each test case, output in one line the largest sum, together with the first and the last numbers of the maximum subsequence. The numbers must be separated by one space, but there must be no extra space at the end of a line. In case that the maximum subsequence is not unique, output the one with the smallest indices  and  (as shown by the sample case). If all the  numbers are negative, then its maximum sum is defined to be 0, and you are supposed to output the first and the last numbers of the whole sequence.

### Sample Input:

10
-10 1 2 3 4 -5 -23 3 7 -21


### Sample Output:

10 1 4

// MaximumSubsequenceSum.cpp: 定义控制台应用程序的入口点。
//

#include "stdafx.h"
#include<iostream>
#include <vector>
using namespace std;

int main()
{
int N;				//输入数列长度
cin >> N;
int * array = new int[N];
for (int i = 0; i < N; i++) {
cin >> array[i];
}
//sum为子列和，MAX为最大子列和，first记录子列和的第一项，src为最大子列和的第一项，end为最大子列和的最后一项
int sum=0,first=0,src=N-1,end=N-1,max=-1;
//动态规划
for (int i = 0; i < N; i++) {
sum += array[i];
//当前子列和>最大子列和时修改MAX,即SUM>MAX时，将max = sum.
if (sum > max) {
max = sum;
src = first;
end = i;
}
//sum<0时重置sum,first
if (sum <0) {
first = i + 1;
sum = 0;
}
}
if (max<0) cout << 0 << ' ' << array[0] << ' ' << array[N - 1];
else cout << max << ' ' << array[src] << ' ' << array[end];
delete[] array;
return 0;
}