Digital Root
Problem's Link
Mean:
定义f(n)为n各位数字之和,如果n是各位数,则n个数根是f(n),否则为f(n)的数根.
现在给出n个Ai,求出A1*A2*…*AN + A1*A2*…*AN-1 + … + A1*A2 + A1 这个式子的数根.
analyse:
这道题目要用到这个规律,设f(n)是n的digital root,那么f(A*N)=f(A*f(N));
具体证明过程如下:
设自然数N=a[n]a[n-1]…a[0],其中a[0],a[1]、…、a[n]分别是个位、十位、…上的数字
再设M=a[0]+a[1]+…+a[n]
求证:N≡M(mod 9).
证明:
∵ N=a[n]a[n-1]…a[0]=a[n]*10^n+a[n-1]*10^(n-1)+…+a[1]*10+a[0].
又∵ 1≡1(mod 9),
10≡1(mod 9),
10^2≡1(mod 9),
…
10^n≡1(mod 9).
上面这些同余式两边分别同乘以a[0]、a[1]、a[2]、…、a[n],再相加得:
a[0]+a[1]*10+…+a[n]*10^n≡(a[0]+a[1]+…+a[n])(mod 9),
即 N≡M(mod 9),得证。
有了这个性质就容易解决本题了
在计算过程中,可以不断mod 9,因为我们知道有这样两个性质:
(A+B)mod C = ((A mod C) + (B mod C))mod C
(AB)mod C = ((A mod C)×(B mod C)) mod C
还要注意,如果余数为0,则输出9.
Time complexity: O(N)
view code
* -----------------------------------------------------------------
* Copyright (c) 2016 crazyacking.All rights reserved.
* -----------------------------------------------------------------
* Author: crazyacking
* Date : 2016-01-08-10.51
*/
#include <queue>
#include <cstdio>
#include <set>
#include <string>
#include <stack>
#include <cmath>
#include <climits>
#include <map>
#include <cstdlib>
#include <iostream>
#include <vector>
#include <algorithm>
#include <cstring>
using namespace std;
typedef long long( LL);
typedef unsigned long long( ULL);
const double eps( 1e-8);
#define REP( i, n ) \
for ( int i = 0; i < (n); i++ )
#define REPD( i, n ) \
for ( int i = (n) - 1; i >= 0; i-- )
#define FOR( i, b, e ) \
for ( int i = (b); i <= (e); i++ )
typedef long long int64;
const int MAXN = 1000;
int T , N;
int64 val [ MAXN ];
int droot( int x )
{
if ( x < 10 ) return x;
int ans = 0;
while ( x > 0 )
{
ans += x % 10;
x /= 10;
}
return droot( ans );
}
int main()
{
scanf( "%d" , & T );
while ( T -- )
{
scanf( "%d" , &N );
#warning READ LLD
REP( i , N )
scanf( "%I64d" , & val [ i ] );
int64 ans = droot( val [N - 1 ] );
REPD( i , N - 1 )
ans = droot( droot( val [ i ]) * droot( ans + 1) );
printf( "%I64d \n " , ans );
}
return 0;
}