digital root

这道题【https://leetcode.com/problems/add-digits/】自己写的答案代码:

public int addDigits(int num) {
        if(num/9 == 0){
            return num;
        }
        if(num%9 == 0){
            return 9;
        }
        return num%9;
    }

主要是根据提示看了相关数根的知识,证明见下:

转载保留版权:http://haipz.com/blog/i/6456 - 海胖博客

数根是自然数的一种性质,换句话说,每个自然数都有一个数根。数根是将一正整数的各个位数相加(即横向相加),若加完后的值大于10的话,则继续将各位数进行横向相加直到其值小于十为止,或是,将一数字重复做数字和,直到其值小于十为止,则所得的值为该数的数根。

例如54817的数根为7,因为5+4+8+1+7=25,25大于10则再加一次,2+5=7,7小于十,则7为54817的数根。 

公式法求数根:

a的数根b = ( a - 1) % 9 + 1

另外还有一个结论要记:任何一个整数模9同余于它的各数位上数字之和。

具体证明过程如下:

设自然数N=a[n]a[n-1]…a[0],其中a[0],a[1]、…、a[n]分别是个位、十位、…上的数字

再设M=a[0]+a[1]+…+a[n]

求证:N≡M(mod 9). 

证明:

因为 N=a[n]a[n-1]…a[0]=a[n]*10^n+a[n-1]*10^(n-1)+…+a[1]*10+a[0]

又因为 1≡1(mod 9), 10≡1(mod 9), 10^2≡1(mod 9), … 10^n≡1(mod 9)

上面这些同余式两边分别同乘以a[0]、a[1]、a[2]、…、a[n],再相加得:

a[0]+a[1]*10+…+a[n]*10^n≡(a[0]+a[1]+…+a[n])(mod 9), 即 N≡M(mod 9),得证。


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值