/*
题目大意:有N个cows, M个关系
a->b 表示 a认为b popular;如果还有b->c, 那么就会有a->c
问最终有多少个cows被其他所有cows认为是popular!
思路:强连通分量中每两个节点都是可达的! 通过分解得到最后一个连通分量A,
如果将所有的强连通分量看成一个大的节点,那么A一定是孩子节点(因为我们先
完成的是父亲节点的强连通分量)! 最后如果其他的强连通分量都可以指向A,那么
A中的每一个cow都会被其他cows所有的cows认为popular!
*/
#include <string>
#include <cstdio>
#include <cstring>
#include <iostream>
#include<vector>
#define M 10005
using namespace std;
vector<int>ex[M];
vector<int>ey[M];
int n, m;
int cnt[M];//记录第一次dfs的节点的逆序
int vis[M];//标记节点是否已经被访问过了
int mark[M];//标记每一个节点是属于哪一个连通分量
int ans;
int top;
void dfs1(int u){//出度遍历
if(!vis[u]){
vis[u]=1;
int len=ex[u].size();
for(int i=0; i<len; ++i){
int v=ex[u][i];
dfs1(v);
}
cnt[top++]=u;
}
}
void dfs2(int u){//入度遍历
if(!vis[u]){
vis[u]=1;
mark[u]=ans;
int len=ey[u].size();
for(int i=0; i<len; ++i){
int v=ey[u][i];
dfs2(v);
}
}
}
int main(){
while(scanf("%d%d", &n, &m)!=EOF){
while(m--){
int u, v;
scanf("%d%d", &u, &v);
ex[u].push_back(v);
ey[v].push_back(u);
}
ans=top=0;
for(int i=1; i<=n; ++i)
if(!vis[i])
dfs1(i);
memset(vis, 0, sizeof(vis));
for(int i=top-1; i>=0; --i)
if(!vis[cnt[i]]){
++ans;
dfs2(cnt[i]);
}
int count=0;
int u=0;
for(int i=1; i<=n; ++i)
if(mark[i]==ans){
++count;
u=i;
}
memset(vis, 0, sizeof(vis));
dfs2(u);
for(int i=1; i<=n; ++i)//其他的强连通分量是否都指向了最后一个强连通分量
if(!vis[i]){
count=0;
break;
}
printf("%d\n", count);
for(int i=1; i<=n; ++i){
ex[i].clear();
ey[i].clear();
}
memset(vis, 0, sizeof(vis));
}
return 0;
}
/*
tarjan 算法果然nb! 首先我们利用该算法将所有的强连通分量分开!
然后将每一个连通分量看成是一个点,这样就成了一个有向无环图!
接着判断初度为 0 的点一共有多少个!如果只有一个,那么最终的答案就是
这个节点终所有子节点的个数!也就是说这个节点中的每一个子节点都能
其他的所有节点到达!
如果初度为 0 的点多余1个,那么对不起,不能满足某个节点恰好能被其他所有
的节点访问到!
*/#include<iostream>
#include<cstdio>
#include<vector>
#include<stack>
#include<cstring>
#define M 10005
using namespace std;
vector<int>edge[M];
stack<int>s;
int low[M], vis[M];
int sccN[M], pre[M];
int n, m;
int dfs_clock, cnt;
void dfs(int u){//tarjan 算法
int len = edge[u].size();
pre[u]=low[u]=++dfs_clock;
s.push(u);
for(int i=0; i<len; ++i){
int v=edge[u][i];
if(!pre[v]){
dfs(v);
low[u]=min(low[u], low[v]);
}
else if(!sccN[v])
low[u] = min(low[u], pre[v]);
}
if(low[u]==pre[u]){
++cnt;
while(1){
int v=s.top();
s.pop();
sccN[v]=cnt;
if(u==v) break;
}
}
}
int main(){
while(scanf("%d%d", &n, &m)!=EOF){
dfs_clock=cnt=0;
memset(pre, 0, sizeof(pre));
memset(sccN, 0, sizeof(sccN));
memset(vis, 0, sizeof(vis));
while(m--){
int u, v;
scanf("%d%d", &u, &v);
edge[u].push_back(v);
}
for(int i=1; i<=n; ++i)
if(!pre[i])
dfs(i);
int num=0;
for(int i=1; i<=n; ++i)
if(sccN[i]==1)
++num;
int count=0;
memset(vis, 0, sizeof(vis));
for(int i=1; i<=n; ++i){
int len=edge[i].size();
for(int j=0; j<len; ++j)
if(sccN[i] != sccN[edge[i][j]]){
vis[sccN[i]]=1;
break;
}
}
for(int i=1; i<=cnt; ++i)
if(!vis[i]) ++count;
if(count==1)
printf("%d\n", num);
else printf("0\n");
for(int i=1; i<=n; ++i)
edge[i].clear();
while(!s.empty())
s.pop();
}
return 0;
}
/*比较慢的方法就是:利用tarjan算法将所有的强连通分量进行分离之后,
将每一个强连通分量看成是一个点,如果有满足我们答案的解,那么初度为零
点一定只有一个,并且这个点的所有子节点的编号是 1!那么我们先计算出子节点
编号为 1的个数, 然后在判断其他的强连通分量的节点是否能够到达编号为 1 的
强连通分量! */
#include<iostream>
#include<cstdio>
#include<vector>
#include<stack>
#include<cstring>
#define M 10005
using namespace std;
vector<int>edge[M];
stack<int>s;
int low[M], vis[M], used[M];
int sccN[M], pre[M];
int n, m;
int dfs_clock, cnt, sum, xx;
void dfs(int u){
int len = edge[u].size();
pre[u]=low[u]=++dfs_clock;
s.push(u);
for(int i=0; i<len; ++i){
int v=edge[u][i];
if(!pre[v]){
dfs(v);
low[u]=min(low[u], low[v]);
}
else if(!sccN[v])
low[u] = min(low[u], pre[v]);
}
if(low[u]==pre[u]){
++cnt;
while(1){
int v=s.top();
s.pop();
sccN[v]=cnt;
if(u==v) break;
}
}
}
int dfs2(int u){
int len=edge[u].size();
if(sccN[u]==1){//到达之后就不在进行任何搜索
sum+=xx;
return 1;
}
vis[u]=1;
for(int i=0; i<len; ++i){
int v=edge[u][i];
if(!vis[v]){
if(dfs2(v))
return 1;
}
}
return 0;
}
int main(){
while(scanf("%d%d", &n, &m)!=EOF){
dfs_clock=cnt=0;
memset(pre, 0, sizeof(pre));
memset(sccN, 0, sizeof(sccN));
memset(vis, 0, sizeof(vis));
memset(used, 0, sizeof(used));
while(m--){
int u, v;
scanf("%d%d", &u, &v);
edge[u].push_back(v);
}
for(int i=1; i<=n; ++i)
if(!pre[i])
dfs(i);
int num=0;
sum=0;
used[1]=1;
for(int i=1; i<=n; ++i){
if(sccN[i]==1)
++num;
else if(!used[sccN[i]]){
memset(vis, 0, sizeof(vis));
xx=sccN[i];
used[sccN[i]]=1;
dfs2(i);
}
}
if(sum==(cnt+1)*cnt/2-1)//最后将能到达标号为1的连通分量的所有强连通分量的标号加起来
printf("%d\n", num);
else printf("0\n");
for(int i=1; i<=n; ++i)
edge[i].clear();
while(!s.empty())
s.pop();
}
return 0;
}
本文转自 小眼儿 博客园博客,原文链接:http://www.cnblogs.com/hujunzheng/p/3895221.html,如需转载请自行联系原作者