思维作业
在七年级上册的数学书中,有一个课题叫
做
“探究无盖长方体的最大容积”
,
大致内容是:
一张纸如何剪能让它折起来之后的无盖长方体
的体积(也就是容积)最大。学习过后,思索
很久,得出以下结论。
如何剪一张纸才能让它折起来之后体积最
大,说明白了也就是怎么样在这张纸的四个角
处剪相同的正方形才能让其体积最大,在其四
个角之处剪的正方形的边长也就是折起来之后
的长方体的高。如果设减去的小长方形的边长为
x(
即长方体的高为
x)
,那张纸的长为
a
,宽为
b
,
那么长方体的长就是
(
a
—
2x
)
,
宽就是
(
b
—
2x
)
,
因此四个小正方形的边长不能大于等于这张纸
的长和宽。
今天要研究的是减去的四个小正方形的边长
是否与那张纸的长宽有关。
(所有数值精确到
0.1
,
因为有些四个小正
方形的边长可能会是循环小数,除下来的比值
也可能除不尽,故四舍五入到
0.1
)
第一张纸长宽的比值为
1:1
,也就是正方
形,为了保险起见,试两组数据,一组边长为
50cm
,另一组边长为
100cm
。
用
excel
来做。
正方形边长为
50cm
高
长
宽
体积
0.1
49.8
49.8
248.004
0.2
49.6
49.6
492.032
0.3
49.4
49.4
732.108
0.4
49.2
49.2
968.256
0.5
49
49
1200.5
0.6
48.8
48.8
1428.864
0.7
48.6
48.6
1653.372
0.8
48.4
48.4
1874.048
0.9
48.2
48.2
2090.916
„„
„„
„„
„„
7.4
35.2
35.2
9168.896
7.5
35
35
9187.5
7.6
34.8
34.8
9203.904
7.7
34.6
34.6