长方形纸做容积最大的长方体_探究无盖长方体的最大容积

这篇博客探讨了七年级数学课题——如何裁剪一张长方形纸,使其折叠后形成的无盖长方体体积最大。通过实验和Excel分析,发现减去的正方形边长(即长方体的高)与纸的长宽比例有关,并提供了不同比例下的体积变化数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

思维作业

在七年级上册的数学书中,有一个课题叫

“探究无盖长方体的最大容积”

大致内容是:

一张纸如何剪能让它折起来之后的无盖长方体

的体积(也就是容积)最大。学习过后,思索

很久,得出以下结论。

如何剪一张纸才能让它折起来之后体积最

大,说明白了也就是怎么样在这张纸的四个角

处剪相同的正方形才能让其体积最大,在其四

个角之处剪的正方形的边长也就是折起来之后

的长方体的高。如果设减去的小长方形的边长为

x(

即长方体的高为

x)

,那张纸的长为

a

,宽为

b

那么长方体的长就是

(

a

2x

)

宽就是

(

b

2x

)

因此四个小正方形的边长不能大于等于这张纸

的长和宽。

今天要研究的是减去的四个小正方形的边长

是否与那张纸的长宽有关。

(所有数值精确到

0.1

因为有些四个小正

方形的边长可能会是循环小数,除下来的比值

也可能除不尽,故四舍五入到

0.1

)

第一张纸长宽的比值为

1:1

,也就是正方

形,为了保险起见,试两组数据,一组边长为

50cm

,另一组边长为

100cm

excel

来做。

正方形边长为

50cm

体积

0.1

49.8

49.8

248.004

0.2

49.6

49.6

492.032

0.3

49.4

49.4

732.108

0.4

49.2

49.2

968.256

0.5

49

49

1200.5

0.6

48.8

48.8

1428.864

0.7

48.6

48.6

1653.372

0.8

48.4

48.4

1874.048

0.9

48.2

48.2

2090.916

„„

„„

„„

„„

7.4

35.2

35.2

9168.896

7.5

35

35

9187.5

7.6

34.8

34.8

9203.904

7.7

34.6

34.6

为了建立一个数学模型来解决这个问题,我们首先需要确定一些变量和约束条件。设长方体的长、宽、高分别为 \( x \), \( y \), 和 \( z \),容器底面积 \( A_{\text{bottom}} = xy \) 而侧面积 \( A_{\text{side}} = 2xz + 2yz \)(因为有两个相对的长面和两个相对的宽面)。成本函数可以表示为: \[ C = 3A_{\text{bottom}} + 1.5(A_{\text{side}} - 2xy) \] 因为底部造价独立于高度,所以36元的成本限制包括了全部底部费用和部分侧面积费用: \[ 36 = 3xy + 1.5(2xz + 2yz - 2xy) \] 目标是最大容积 \( V = xyz \),同时满足上述成本限制。由于成本函数是线性的,而体积函数是三次幂,这是一个典型的线性规划问题。我们可以使用 MATLAB 的 `linprog` 函数来解决。 下面是MATLAB代码的一个示例(假设已经安装了Matlab Optimization Toolbox): ```matlab % 定义变量和目标函数 x = optimvar('x', 'LowerBound', 0); % 长度 y = optimvar('y', 'LowerBound', 0); % 宽度 z = optimvar('z', 'LowerBound', 0); % 高度 V = x*y*z; % 目标:最大容积 % 成本函数 C = 3*x*y + 1.5*(2*x*z + 2*y*z - 2*x*y); % 约束条件(总成本等于36) cost_constraint = 36 == C; % 优化问题 problem = optimproblem('Objective', maximize(V), 'Constraints', cost_constraint); solution = solve(problem); % 输出结果 [xyzSolution, valueSolution] = getSolution(solution); disp("容器的最大尺寸:"); fprintf("长: %.2f cm\n", xyzSolution.x * 100); % 因为长度通常以cm为单位 fprintf("宽: %.2f cm\n", xyzSolution.y * 100); fprintf("高: %.2f cm\n", xyzSolution.z * 100); fprintf("最大容积: %.2f cm^3\n", valueSolution); ``` 运行这段代码后,你会得到最优的容器尺寸和最大容积,前提是你的Matlab版本支持优化工具箱。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值