#教育头条# #教育# #数学#
某海滨浴场拟建三间长方形休息室,休息室的一面靠墙(墙长50 m),中间用两道墙隔开,已知计划中的建筑材料可建墙的总长度为48 m,则这三间长方形休息室的总占地面积的最大值为多少平方米?
你能快速知道如何解决吗?相信随着今天这个单元知识的处理,你会更棒的!
想了解更多精彩内容,快来关注@同心圆数学世界


自学检测试题





参考答案






这些看起来并不重要的文字
22.3 实际问题与二次函数
第1课时 二次函数与图形面积
01 基础题
知识点 二次函数与图形面积
1.(六盘水中考)如图,假设篱笆(虚线部分)的长度为16 m,则所围成矩形ABCD的最大面积是(C)
A.60 m2 B.63 m2 C.64 m2 D.66 m2
2.(咸宁中考)用一根长为40 cm的绳子围成一个面积为a cm2的长方形,那么a的值不可能为(D)
A.20 B.40 C.100 D.120
3.(定西中考)如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC边上一动点,沿B→A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则下列能大致反映y与x函数关系的图象是(B)
4.(衢州中考)某农场拟建三间长方形种牛饲养室,饲养室的一面靠墙(墙长50 m),中间用两道墙隔开(如图),已知计划中的建筑材料可建墙的总长度为48 m,则这三间长方形种牛饲养室的总占地面积的最大值为144m2.
5.如图,在△ABC中,∠B=90°,AB=8 cm,BC=6 cm,点P从点A开始沿AB向B点以2 cm/s的速度移动,点Q从点B开始沿BC向C点以1 cm/s的速度移动,如果P,Q分别从A,B同时出发,当△PBQ的面积为最大时,运动时间t为2 s.
6.将一根长为20 cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是 cm2.
7.已知直角三角形两条直角边的和等于20,两条直角边各为多少时,这个直角三角形的面积最大?最大值是多少?
解:设直角三角形的一直角边长为x,则另一直角边长为(20-x),其面积为y,则
y=x(20-x)
=-x2+10x
=-(x-10)2+50.
当x=10时,面积y值取最大,y最大=50.
8.(滨州中考)某高中学校为高一新生设计的学生单人桌的抽屉部分是长方体形,抽屉底面周长为180 cm,高为20 cm.请通过计算说明,当底面的宽x为何值时,抽屉的体积y最大?最大为多少?(材质及其厚度等暂忽略不计)
解:根据题意,得y=20x(-x).
整理,得
y=-20x2+1 800x
=-20(x2-90x+2 025)+40 500
=-20(x-45)2+40 500.
∵-20<0,
∴当x=45时,函数有最大值,y最大=40 500.
即当底面的宽为45 cm时,抽屉的体积最大,最大为40 500 cm3.
02 中档题
9.(潍坊中考)如图,有一块边长为6 cm的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是(C)
A. cm2 B. cm2 C. cm2 D. cm2
10.手工课上,小明准备做一个形状是菱形的风筝,这个菱形的两条对角线长度之和恰好为60 cm,菱形的面积S(单位:cm2)随其中一条对角线的长x(单位:cm)的变化而变化.
(1)请直接写出S与x之间的函数关系式(不要求写出自变量x的取值范围);
(2)当x是多少时,菱形风筝面积S最大?最大面积是多少?
解:(1)S=-x2+30x.
(2)∵S=-x2+30x=-(x-30)2+450,
且a=-<0,
∴当x=30时,S有最大值,最大值为450.
即当x为30 cm时,菱形风筝的面积最大,最大面积是450 cm2.
11.(泉州中考)某校在基地参加社会实践活动中,带队老师考问学生:基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长69米的不锈钢栅栏围成,与墙平行的一边留一个宽为3米的出入口,如图所示,如何设计才能使园地的面积最大?下面是两位学生争议的情景:
请根据上面的信息,解决问题:
(1)设AB=x米(x>0),试用含x的代数式表示BC的长;
(2)请你判断谁的说法正确,为什么?
解:(1)BC=69+3-2x=72-2x.
(2)小英说法正确.
矩形面积S=x(72-2x)=-2(x-18)2+648,
∵72-2x>0,∴x<36.
∴0<x<36.
∴当x=18时,S取最大值,此时x≠72-2x,
∴面积最大的不是正方形.
∴小英的说法正确.
03 综合题
12.(朝阳中考)如图,正方形ABCD的边长为2 cm,△PMN是一块直角三角板(∠N=30°),PM>2 cm,PM与BC均在直线l上,开始时M点与B点重合,将三角板向右平行移动,直至M点与C点重合为止.设BM=x cm,三角板与正方形重叠部分的面积为y cm2.
下列结论:
①当0≤x≤时,y与x之间的函数关系式为y=x2;
②当
③当MN经过AB的中点时,y= cm2;
④存在x的值,使y=S正方形ABCD(S正方形ABCD表示正方形ABCD的面积).
其中正确的是①②④(写出所有正确结论的序号).