基于clementine(SPSS Modeler)的时间序列模型

本文介绍了使用SPSS Modeler进行时间序列预测,重点讨论了指数平滑和ARIMA模型。指数平滑是一种基于观察值加权预测的方法,而ARIMA是自回归移动平均模型,用于通过历史数据预测未来值。专家模式则自动选择最佳模型。自相关函数和部分自相关函数用于衡量序列值之间的关联,帮助优化预测。
摘要由CSDN通过智能技术生成

SPSS clementine,就是现在的SPSS modeler,好吧,学校还在用这个老古董。目测现在介绍这方面的资料不多,正好在学习,就记录下来。

时间序列模型可做预测,顾名思义预测未来某个变量在某一个时间的值。时间序列预测的变量的特征有:周期性、季节性、非季节性、趋势。

时间序列建模的算法:专家模式、ARIMA、指数平滑。

指数平滑

通过观察的加权值来预测未来值。该算法不是以对数据的理解为基础的。

 

ARIMA

自回归移动平均模型(ARIMA),是由博克思(Box)和詹金斯(Jenkins)于70年代初提出的一著名时间序列预测方法,基本思想是:将预测对象随时间推移而形成的数据序列视为一个随机序列,用一定的数学模型来近似描述这个序列。这个模型一旦被识别后就可以从时间序列的过去值及现在值来预测未来值。有助于解析要预测序列的行为。

 

专家模式

自动识别使用

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值