hadoop ha

  • HA 登陆master1 >cd {hadoop-install-path} >wget 对应的hadoop 包 >tar zxvf hadoop-x.tar.gz >cd hadoop-x/etc/hadoop

    • vi code-site.xml 替换 下面{hadoop-home} 和{hostname}中的参数 ``` <property>
      <name>fs.defaultFS</name>
      <value>hdfs://ns</value>
      </property>   <property>          <name>hadoop.tmp.dir</name>         <value>/{hadoop-home}/tmp</value>      </property>      <property>         <name>io.file.buffer.size</name>         <value>131702</value>     </property>

      <!-- zk ha 配置 将其中的-->

      <property> <name>ha.zookeeper.quorum</name> <value>{hostname}:2181,{hostname}:2181,{hostname}:2181</value> </property>

    ```
    
  • vi hdfs-site.xml

    1. 注意nn1 和nn2 地址 对应的是 master1 和 master2
    2. {journal-address} 主要是要保持 奇数
    3. {hadoop-home} 填写上合适的地址,{other-path}最好是不要和其它程序使用一个硬盘。如果没有,可以和{hadoop-home} 一致
    4. dfs.datanode.data.dir 如果有多个硬盘,可以填写多个地址
  <property>
        <name>dfs.namenode.name.dir</name>
        <value>{hadoop-home}/dfs/name</value> # 
    </property>
    <property>
        <name>dfs.datanode.data.dir</name>
        <value>{other-path}/dfs/data</value>
    </property>
    <property>
        <name>dfs.replication</name>
        <value>2</value>#这里有几台从机就配置几 例如:主机*1+从机*2 这里就配置2
    </property>
  <property>    
       <name>dfs.nameservices</name>    
       <value>ns</value>    
   </property>  
   <!-- ns下面有两个NameNode,分别是nn1,nn2 -->
   <property>
      <name>dfs.ha.namenodes.ns</name>
      <value>nn1,nn2</value>
   </property>
   <!-- nn1的RPC通信地址 -->
   <property>
      <name>dfs.namenode.rpc-address.ns.nn1</name>
      <value>mast1:9000</value>
   </property>
   <!-- nn1的http通信地址 -->
   <property>
       <name>dfs.namenode.http-address.ns.nn1</name>
       <value>mast1:50070</value>
   </property>
   <!-- nn2的RPC通信地址 -->
   <property>
       <name>dfs.namenode.rpc-address.ns.nn2</name>
       <value>mast2:9000</value>
   </property>
   <!-- nn2的http通信地址 -->
   <property>
       <name>dfs.namenode.http-address.ns.nn2</name>
       <value>mast2:50070</value>
   </property>
   <!-- 指定NameNode的元数据在JournalNode上的存放位置 -->
   <property>
        <name>dfs.namenode.shared.edits.dir</name>
        <value>qjournal://{journal-address}:8485;{journal-address}:8485;{journal-address}:8485/ns</value>
   </property>
   <!-- 指定JournalNode在本地磁盘存放数据的位置 -->
   <property>
         <name>dfs.journalnode.edits.dir</name>
         <value>{hadoop-home}/hdfs/journal</value>
   </property>
   <!-- 开启NameNode故障时自动切换 -->
   <property>
         <name>dfs.ha.automatic-failover.enabled</name>
         <value>true</value>
   </property>
   <!-- 配置失败自动切换实现方式 -->
   <property>
           <name>dfs.client.failover.proxy.provider.ns</name>
           <value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
   </property>
   <!-- 配置隔离机制 -->
   <property>
            <name>dfs.ha.fencing.methods</name>
            <value>sshfence</value>
   </property>
   <!-- 使用隔离机制时需要ssh免登陆 -->
   <property>
           <name>dfs.ha.fencing.ssh.private-key-files</name>
           <value>{user-dir}/.ssh/id_rsa</value>
   </property>

	<!-- 在NN和DN上开启WebHDFS (REST API)功能,不是必须 -->                                                                    
   <property>    
      <name>dfs.webhdfs.enabled</name>    
      <value>true</value>    
   </property> 
  • vi mapred-site.xml 如果目录中只有 mapred-site.xml.template 使用命令 cp mapred-site.xml.template mapred-site.xml 注意{master}
<configuration>
   <!--2.0以后的配置 ,mapreduce 升级为 yarn  -->
	<property> 
		<name>mapreduce.framework.name</name> 			
		<value>yarn</value> 
	</property> 
	<property> 
		<name>mapreduce.jobhistory.address</name> 			
		<value>{master}:10020</value> 
	</property>
	<property> 
		<name>mapreduce.jobhistory.webapp.address</name> 
		<value>{master}:19888</value> 
	</property>

	</configuration>
  • vi yarn-site.xml
    • single node
    • ha
    	<configuration>
    			<!--rm失联后重新链接的时间-->
    			<property>
    				<name>yarn.resourcemanager.connect.retry-interval.ms</name>
    				<value>2000</value>
    			</property>
    			<!--开启resourcemanagerHA,默认为false-->
    			<property>
    				<name>yarn.resourcemanager.ha.enabled</name>
    				<value>true</value>
    			</property>
    
    			<!--配置resourcemanager-->
    			<property>
    				<name>yarn.resourcemanager.ha.rm-ids</name>
    				<value>rm1,rm2</value>
    			</property>
    
    			<property>
    				<name>ha.zookeeper.quorum</name>
    				<value>master:2181,node1:2181</value>
    			</property>
    
    			<!--开启故障自动切换-->
    			<property>
    				<name>yarn.resourcemanager.ha.automatic-failover.enabled</name>
    				<value>true</value>
    			</property>
    
    			<property>
    				<name>yarn.resourcemanager.hostname.rm1</name>
    				<value>master</value>
    			</property>
    
    			<property>
    				<name>yarn.resourcemanager.hostname.rm2</name>
    				<value>node1</value>
    			</property>
    
    			<!--
    			在hadoop001上配置rm1,在hadoop002上配置rm2,
    			注意:一般都喜欢把配置好的文件远程复制到其它机器上,但这个在YARN的另一个机器上一定要修改
    			-->
    			<property>
    				<name>yarn.resourcemanager.ha.id</name>
    				<value>rm1</value>
    				<description>If we want to launch more than one RM in single node,we need this configuration</description>
    			</property>
    
    			<!--开启自动恢复功能-->
    			<property>
    				<name>yarn.resourcemanager.recovery.enabled</name>
    				<value>true</value>
    			</property>
    			<!--配置与zookeeper的连接地址-->
    			<property>
    				<name>yarn.resourcemanager.zk-state-store.address</name>
    				<value>master:2181,node1:2181</value>
    			</property>
    			<property>
    				<name>yarn.resourcemanager.store.class</name>
    				<value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore</value>
    			</property>
    			<property>
    				<name>yarn.resourcemanager.zk-address</name>
    				<value>master:2181,node1:2181</value>
    			</property>
    			<property>
    				<name>yarn.resourcemanager.cluster-id</name>
    				<value>appcluster-yarn</value>
    			</property>
    			<!--schelduler失联等待连接时间-->
    			<property>
    				<name>yarn.app.mapreduce.am.scheduler.connection.wait.interval-ms</name>
    				<value>5000</value>
    			</property>
    			<!--配置rm1-->
    			<property>
    				<name>yarn.resourcemanager.address.rm1</name>
    				<value>master:8032</value>
    			</property>
    			<property>
    				<name>yarn.resourcemanager.scheduler.address.rm1</name>
    				<value>master:8030</value>
    			</property>
    			<property>
    				<name>yarn.resourcemanager.webapp.address.rm1</name>
    				<value>master:8088</value>
    			</property>
    			<property>
    				<name>yarn.resourcemanager.resource-tracker.address.rm1</name>
    				<value>master:8031</value>
    			</property>
    			<property>
    				<name>yarn.resourcemanager.admin.address.rm1</name>
    				<value>master:8033</value>
    			</property>
    			<property>
    				<name>yarn.resourcemanager.ha.admin.address.rm1</name>
    				<value>master:23142</value>
    			</property>
    			<!--配置rm2-->
    			<property>
    				<name>yarn.resourcemanager.address.rm2</name>
    				<value>node1:8032</value>
    			</property>
    			<property>
    				<name>yarn.resourcemanager.scheduler.address.rm2</name>
    				<value>node1:8030</value>
    			</property>
    			<property>
    				<name>yarn.resourcemanager.webapp.address.rm2</name>
    				<value>node1:8088</value>
    			</property>
    			<property>
    				<name>yarn.resourcemanager.resource-tracker.address.rm2</name>
    				<value>node1:8031</value>
    			</property>
    			<property>
    				<name>yarn.resourcemanager.admin.address.rm2</name>
    				<value>node1:8033</value>
    			</property>
    			<property>
    				<name>yarn.resourcemanager.ha.admin.address.rm2</name>
    				<value>node1:23142</value>
    			</property>
    			<property>
    				<name>yarn.nodemanager.aux-services</name>
    				<value>mapreduce_shuffle</value>
    			</property>
    			<property>
    				<name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
    				<value>org.apache.hadoop.mapred.ShuffleHandler</value>
    			</property>
    			<property>
    				<name>yarn.nodemanager.local-dirs</name>
    				<value>/data/hadoop/yarn/local</value>
    			</property>
    			<property>
    				<name>yarn.nodemanager.log-dirs</name>
    				<value>/data/hadoop/yarn/log</value>
    			</property>
    			<property>
    				<name>mapreduce.shuffle.port</name>
    				<value>23080</value>
    			</property>
    			<!--故障处理类-->
    			<property>
    				<name>yarn.client.failover-proxy-provider</name>
    				<value>org.apache.hadoop.yarn.client.ConfiguredRMFailoverProxyProvider</value>
    			</property>
    			<property>
    				<name>yarn.resourcemanager.ha.automatic-failover.zk-base-path</name>
    				<value>/yarn-leader-election</value>
    				<description>Optionalsetting.Thedefaultvalueis/yarn-leader-election</description>
    			</property>
    			<property>
    				<name>yarn.scheduler.fair.preemption</name> 
    				<value>true</value>
    				<description>是否支持抢占,默认值为false</description>
    			</property>
    			<property>
    				<name>yarn.scheduler.fair.sizebasedweight</name> 
    				<value>false</value>
    				<description>是否启用按应用程序资源需求分配资源,默认值为false即采用公平轮询的方法分配资源</description>
    			</property>
    			<property>
    				<name>yarn.scheduler.increment-allocation-mb</name> 
    				<value>1024</value>
    				<description>仅fair有效,内存规整化单位,墨认值1024.(示例一个container请求1.5G,则调度器规整化为2G)</description>
    			</property>	
    			<property>
    				<name>yarn.nodemanager.resource.memory-mb</name>
    				<value>14336</value>
    				<discription>每个节点可用内存,单位MB,默认是8g,spark需要大量内存,这里调整为18g</discription>
    			</property>
    	        <property>
    				<name>yarn.nodemanager.resource.cpu-vcores</name>
    				<value>12</value>
    				<discription>1真core=2 vcores</discription>
    			</property>
    		</configuration>
    
* vi hadoop-env.sh
       修改 export JAVA_HOME=${JAVA_HOME} 将 java_home 改为实际地址
* vi slvaes
      追加 从节点hostname,有几台加几台
* scp hadoop
	  将hadoop 发送到其他的节点,包括 master2

* 启动
	* 第一次启动  hdfs 启动
		  在dfs.namenode.shared.edits.dir配置的机器下执行下面的命令,启动journalnode
          >sbin/hadoop-daemon.sh start journalnode
		  master 执行 
          bin/hdfs namenode -format
		  bin/hdfs zkfc -formatZK
		  sbin/hadoop-daemon.sh start namenode
		  sbin/hadoop-daemon.sh start zkfc
          node1 执行
		  bin/hdfs namenode -bootstrapStandby
		  sbin/hadoop-daemon.sh start namenode
          master 执行
		  sbin/hadoop-daemon.sh start zkfc
          sbin/hadoop-daemons.sh start datanode
    * 第N次启动 hdfs 启动
          sbin/start-dfs.sh
    * 第1-N次yarn 启动
		在master 启动  
 		 sbin/yarn-daemon.sh start resourcemanager
    	  sbin/yarn-daemons.sh start nodemanager
        在master2 启动
		  sbin/yarn-daemon.sh start resourcemanager

转载于:https://my.oschina.net/u/2362111/blog/907675

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值