马知恩周义仓编常微分方程定性与稳定性方法部分习题参考解答

本文详细探讨了常微分方程的定性理论与稳定性问题,包括解的存在性、唯一性、解的性质以及稳定性分析。通过多个习题的解答,阐述了Cauchy问题、动力系统的基本知识和稳定性理论的应用,展示了如何利用Lipschitz条件、比较定理、Gronwall引理等工具来判断解的性质和稳定性。
摘要由CSDN通过智能技术生成

第一章    基本定理

 

1设有 $$\bex \frac{\rd \bbx}{\rd t}=\bbf(t,\bbx),\quad \bbx(t_0)=\bbx^0,\quad (t_0,\bbx^0)\in \bbR\times \bbR^n. \eex$$ 试证: 若 $\bbf\in C^1(G)$, 则在 $(t_0,\bbx^0)$ 的领域内, 此 Cauchy 问题的解存在惟一.

证明: 由 $f\in C^1(G)$ 蕴含 $f\in C(G)$ 且在 $G$ 内适合 Lipschitz 条件知有结论.

 

 

2试讨论下列方程解的存在区间:

(1)    $\dps{\frac{\rd y}{\rd x}=\frac{1}{x^2+y^2}}$;

(2)    $\dps{\frac{\rd y}{\rd x}=y(y-1)}$.

解答:

(1)    由 $\dps{\frac{\rd x}{\rd y}=x^2+y^2}$ 的解的存在区间有限知 $y$ 有界, 而由解的延

拓定理, 原方程解的存在区间为 $\bbR$.

(2)    直接求解有 $\dps{y=\frac{1}{1-\frac{y_0-1}{y_0}e^x}}$, 而

a.当 $0\leq y_0\leq 1$ 时, 原方程解的存在区间为 $\bbR$;

b.当 $y_0<0$ 时, 原方程解的存在区间为 $\dps{\sex{\ln\frac{y_0}{y_0-1},\infty}}$;

c.当 $y_0>1$ 时, 原方程解的存在区间为 $\dps{\sex{-\infty,\ln\frac{y_0}{y_0-1}}}$.

 

 

3 设有一阶微分方程式 $$\bex \frac{\rd x}{\rd t}=(t-x)e^{tx^2}. \eex$$ 试证: 过任一点 $(t_0,x_0)\in\bbR^2$ 的右行解的存在区间均为 $[t_0,+\infty)$.

证明: 由 $$\bex \frac{\rd x}{\rd t}=(t-x)e^{tx^2}=\left\{\ba{ll} <0,&x>t,\\ >0,&x<t \ea\right. \eex$$ 知解在 $\sed{x>t}$ 内递减, 在 $\sed{x<t}$ 内递增. 当 $x_0>t_0$ 时, 在 $$\bex \sed{(t,x);t\in\bbR, t_0<x<x_0} \eex$$ 内应用解的延伸定理知解定与 $\sed{x=t}$ 相交, 之后解递增, 在 $$\bex \sed{(t,x);t\in\bbR,x<t} \eex$$ 内应用延伸定理及比较定理即知结论.

 

 

4设有一阶方程 $\dps{\frac{\rd x}{\rd t}=f(x)}$, 若 $f\in C(-\infty,+\infty)$, 且当 $x\neq 0$ 时有 $xf(x)<0$. 求证过 $\forall\ (t_0,x_0)\in\bbR^2$, Cauchy 问题的右行解均在 $[t_0,+\infty)$ 上存在, 且 $\dps{\lim_{t\to+\infty}x(t)=0}$.

  • 8
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值