决策树分类算法及python代码实现案例

决策树分类算法

1、概述

决策树(decision tree——是一种被广泛使用的分类算法。

相比贝叶斯算法,决策树的优势在于构造过程不需要任何领域知识或参数设置

在实际应用中,对于探测式的知识发现,决策树更加适用。

 

2、算法思想

通俗来说,决策树分类的思想类似于找对象。现想象一个女孩的母亲要给这个女孩介绍男朋友,于是有了下面的对话:

      女儿:多大年纪了?

      母亲:26

      女儿:长的帅不帅?

      母亲:挺帅的。

      女儿:收入高不?

      母亲:不算很高,中等情况。

      女儿:是公务员不?

      母亲:是,在税务局上班呢。

      女儿:那好,我去见见。

 

这个女孩的决策过程就是典型的分类树决策。

实质:通过年龄、长相、收入和是否公务员对将男人分为两个类别:见和不见

 

假设这个女孩对男人的要求是:30岁以下、长相中等以上并且是高收入者或中等以上收入的公务员,那么这个可以用下图表示女孩的决策逻辑

 

上图完整表达了这个女孩决定是否见一个约会对象的策略,其中:

◊绿色节点表示判断条件

◊橙色节点表示决策结果

◊箭头表示在一个判断条件在不同情况下的决策路径

图中红色箭头表示了上面例子中女孩的决策过程。

 

这幅图基本可以算是一颗决策树,说它“基本可以算”是因为图中的判定条件没有量化,如收入高中低等等,还不能算是严格意义上的决策树,如果将所有条件量化,则就变成真正的决策树了。

 

决策树分类算法的关键就是根据“先验数据”构造一棵最佳的决策树,用以预测未知数据的类别

 

决策树是一个树结构(可以是二叉树或非二叉树)其每个非叶节点表示一个特征属性上的测试,每个分支代表这个特征属性在某个值域上的输出,而每个叶节点存放一个类别。使用决策树进行决策的过程就是从根节点开始,测试待分类项中相应的特征属性,并按照其值选择输出分支,直到到达叶子节点,将叶子节点存放的类别作为决策结果。

 

3、决策树构造

假如有以下判断苹果好坏的数据样本:

样本    红     大      好苹果

0       1      1         1

1       1      0         1

2       0      1         0

3       0      0         0

 

 

样本中有2个属性,A0表示是否红苹果。A1表示是否大苹果。假如要根据这个数据样本构建一棵自动判断苹果好坏的决策树。

由于本例中的数据只有2个属性,因此,我们可以穷举所有可能构造出来的决策树,就2棵,如下图所示:

 

显然左边先使用A0(红色)做划分依据的决策树要优于右边用A1(大小)做划分依据的决策树。

当然这是直觉的认知。而直觉显然不适合转化成程序的实现,所以需要有一种定量的考察来评价这两棵树的性能好坏。

决策树的评价所用的定量考察方法计算每种划分情况的信息熵增益

如果经过某个选定的属性进行数据划分后的信息熵下降最多,则这个划分属性是最优选择

 

属性划分选择(即构造决策树)的依据:

简单来说,就是无序,混乱的程度

通过计算来理解:

1原始样本数据的熵:

样例总数:4

好苹果:2

坏苹果:2

熵: -(1/2 * log(1/2) + 1/2 * log(1/2)) = 1

信息熵为1表示当前处于最混乱,最无序的状态。

 

2、两颗决策树的划分结果熵增益计算

1先选A0作划分,各子节点信息熵计算如下:

01叶子节点有2个正例,0个负例。信息熵为:e1 = -(2/2 * log(2/2) + 0/2 * log(0/2)) = 0

23叶子节点有0个正例,2个负例。信息熵为:e2 = -(0/2 * log(0/2) + 2/2 * log(2/2)) = 0

因此选择A0划分后的信息熵为每个子节点的信息熵所占比重的加权和:E = e1*2/4 + e2*2/4 = 0

选择A0做划分的信息熵增益GS, A0=S - E = 1 - 0 = 1.

事实上,决策树叶子节点表示已经都属于相同类别,因此信息熵一定为0

 

2先选A1作划分,各子节点信息熵计算如下:

02子节点有1个正例,1个负例。信息熵为:e1 = -(1/2 * log(1/2) + 1/2 * log(1/2)) = 1

13子节点有1个正例,1个负例。信息熵为:e2 = -(1/2 * log(1/2) + 1/2 * log(1/2)) = 1

因此选择A1划分后的信息熵为每个子节点的信息熵所占比重的加权和:E = e1*2/4 + e2*2/4 = 1。也就是说分了跟没分一样!

选择A1做划分的信息熵增益GS, A1=S - E = 1 - 1 = 0.

 

因此,每次划分之前,我们只需要计算出信息熵增益最大的那种划分即可。

先做A0划分时的信息熵增益为1>先做A1划分时的信息熵增益,所以先做A0划分是最优选择!!!

 

4、算法指导思想

经过决策属性的划分后,数据的无序度越来越低,也就是信息熵越来越小

 

5、算法实现

梳理出数据中的属性

比较按照某特定属性划分后的数据的信息熵增益,选择信息熵增益最大的那个属性作为第一划分依据,然后继续选择第二属性,以此类推

 

转载于:https://www.cnblogs.com/ahu-lichang/p/7169026.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值