用决策树实现分类(预测)实战(python)

本文介绍了如何使用决策树进行分类预测,通过getbed.csv数据集展示具体步骤,包括环境准备、代码实现,强调了训练集、验证集和测试集的划分,并提供了相关参考资料和解决常见问题的方法。
摘要由CSDN通过智能技术生成

1.决策树原理

决策树(decision tree)是一类常见的机器学子方法。具体的原理这里不做介绍,读者可以简单理解为:要用决策树做未知样本的分类(预测),一定要现根据已有样本,训练、产生一颗泛化能力强,即能处理未知样本的决策树。

2.用决策树做分类的例子

a.数据集,名为getbed.csv
在这里插入图片描述

季节	时间已过八点	风力情况	要不要赖床
spring	no	breeze	yes
winter	no	no wind	yes
autumn	yes	breeze	yes
winter	no	no wind	yes
summer	no	breeze	yes
winter	yes	breeze	yes
winter	no	gale	yes
winter	no	no wind	yes
spring	yes	no wind	no
summer	yes	gale	no
summer	no	gale	no
autumn	yes	breeze	no

注意,读者制作getbed.csv时,不要带列名。

关于训练集、验证集和测试集的补充知识:参考训练集、验证集和测试集这三个名词的区别

在这里插入图片描述

b.环境准备

需要用到panda 和 scikit-learn,读者环境中没有的,自行安装

c.代码

import pandas as pd
from sklearn.feature_extraction import DictVectorizer
from sklearn import tree
from sklearn.model_selection import train_test_split


'''
获取数据内容。pandas.read_csv
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

同志啊为人民服务!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值