葛一鸣老师写作的《自己动手写神经网络》电子书在百度阅读上线了。
在上一章中。我们已经介绍了神经网络的基本概念、思想。并提及了有关人工神经元模型的部分内容。在本章中。将对人工神经元模型做很多其它的介绍。
图2.1 多输入生物神经元示意图
在上一章中提到了一个简单的神经元模型。而且该模型仅仅有一个输入p。这意味着仅仅能有一个额外的神经元与之相连接。这显然是不够的。
因此。一个有用的神经元必须是能够接受多个输入的,如图2.1所看到的,神经元拥有3个输入p1、p2和p3。当中,w和b是依据网络情况不断进行调整的,而传入函数s和传输函数f是事先选定。那到底有哪些函数能够选择呢?传入函数比較简单。最经常使用的仅仅有依照权重求和,在本例中,s处的输出(净输入n)就是:
p1*w1+p2*w2+p3*w3+b*1
将该输出会作为參数传入输出函数f。并作为该神经元的终于输出。
一般来说,经常使用的传输函数如表2.1所看到的。
表2.1 经常使用传输函数列表
函数名称 | 映射关系 | 图像 | 缩写 | 说明 |
阶梯函数 | a=0, n<=0 a=1, n>0 |
| Step | n大于等于0时,输出1。否则输出0 |
符号函数 | a=-1, n<=0 a=1, n>0 |
| Sgn | n大于等于0时,输出1,否则输出-1 |
线性函数 | a=n |
| Linear | n本身就是神经元的输出 |
饱和线性函数 | a=0, n<0 a=n, 0<=n<=1 a=1, n>1 |
| Ramp | n小于0时。输出0,n在0到1区间时,输出n。n大于1时,输出1 |
对数S形函数 | a=1/(1+exp(-n)) |
| Sigmoid | 有界函数。不管n怎样,输出永远在(0,1)的开区间。 |
双曲正切S形函数 |
|
| Tanh | 有界函数,不管n怎样,输出永远在(-1,1)的开区间。 |
在图2.1中,如果p1=1,p2=0。p3=2,w1=1。w2=-1,w3=1。b=-1。则神经元的净输入为:p1*w1+p2*w2+p3*w3+b*1
=1*1+0*-1+2*1-1
=2
此时,传输函数与神经元输出的关系如表2.1所看到的。
表2.1 传输函数输出值
Step | Sgn | Linear | Ramp | Sigmoid | Tanh |
1 | 1 | 2 | 1 | 0.881 | 0.964 |
传输函数在神经元模型中很重要。一般会选择特定的传输函数来解决特定的问题。
这里再强调3类函数。
首先值得注意的是Step函数。它很easy。当输入小于0时,函数输出0,大于0时,输出1。
该函数能够把输入简单得分为2类。
在兴许讲到的感知机中,就使用了该函数。
其次。另外一个值得注意的函数是Linear线性函数,它总是简单的返回输入值。在一个Adaline网络中,会使用该函数。Adaline类似于感知机。可是由于使用线性函数和其相应的改良学习算法,Adaline相比感知机,能够更好的处理网络噪声。
最后一个值得注意的函数是Sigmoid函数,它接收随意实数输入,并将结果相应到0和1之间。
该函数是可导的。因此,在BP神经网络中使用该函数(BP神经网络学习过程中,须要对传输函数求导)。
单个神经元就能够构成一个最简单的神经网络——感知机。
感知机能够处理简单的分类问题。
比方,如今有2类水果。苹果和香蕉。人们通过识别苹果和香蕉的形状和颜色区别,来区分苹果和香蕉两种水果。
刚出生的婴儿无法区分苹果和香蕉。由于在他们的大脑里。没有相应的分类信息。但通过不断地训练和外部刺激。告诉他们红色的圆形的是苹果。黄色的弯形的是香蕉,不须要多久。婴儿就能够分区这两类水果。用类似的方法也能够让感知机正确得对苹果和香蕉分类。详细的分类过程和原理,将在下一章节介绍。
购买《自己动手写神经网络》电子书你将会获得:
1. QQ群96980352跟【葛一鸣老师】面对面交流!
2. 一本改变你命运的《自己动手写神经网络》全本电子书!
3. 随书源码,帮你构建属于自己的神经网络!
!
4. http://bbs.uucode.net/论坛交流,看见看不见的技术!
5. “神经网络”公众号shenjingwangluo11,学习很多其它人工智能、机器学习的相关内容!
扫描公众号二维码!