NOI08冬令营 数据结构的提炼与压缩

无聊随手翻,翻到了一个这样的好东西——据结构的提炼与压缩

为了防止以后忘记,这里把论文里的题目都纪录一下吧。

1.二维结构的化简

问题一:ural 1568 Train car sorting

定义一个对序列的操作:将这个序列分成两个,然后首尾连起来(我知道我描述得不清楚,自己想一下就好),例子:5 3 2 4 1分成3 4 15 2,然后变成3 4 1 5 2

求将一个排列变成一个升序序列需要进行的操作次数。

我觉得不需要像论文一样弄一个什么母矩阵。我觉得可以给一个序列中每个元素一个高度(其实本质还是一样的,囧),比如5 3 2 4 1就有

5---
-3-4
--2-
---1

我们要让最高的高度越小,并且每一行都是一个升序序列。

然后论文就给出了一个算法,但没有说怎样思考得来的。这个算法确实很美妙。什么,你问我算法是什么?在论文里。时间复杂度:\(O(n \log n)\)

问题二:CEOI 2007 Day 2 Necklaces

我就觉得这题就是一个Trie的进化版。

2.树形结构的化简

问题三:浙江2007年省选 捉迷藏

将树变成括号序列。

比如这棵树:

211605041091960.png

我们可以得到一个这样的序列:[A[B[E][F[H][I]]][C][D[G]]]

考察两个结点,如E和G,取出介于它们之间的那段括号编码 :]{()()}]()[[
把匹配的括号去掉,我们看到\(2\)]\(2\)[,也就是说,在树中,从E向上爬\(2\)步,再向下走\(2\)步就到了G。

对于介于两个节点间的一段括号编码S,可以用一个二元组\((a,b)\)描述它,即这段编码去掉匹配括号后有\(a\)]和b个[

这样,就得到了一个十分有用的结论:
\(a2<b1\)\((a,b)= (a1-b1+a2, b2)\),当\(a2 \geq b1\)\((a,b)=(a1, b1-a2+b2)\)
由此,又得到几个简单的推论:
\(a+b=a1+b2+|a2-b1|=max((a1-b1)+(a2+b2),(a1+b1)-(a2+b2))\)
\(a-b=a1-b1+a2-b2\)
\(b-a=b2-a2+b1-a1\)

然后就可以用线段树搞搞了。时间复杂度:\(O(n \log n)\)

问题四:2005年国家集训队何林论文 树的统计

问题描述:给定一棵含有\(n\)个节点的树,所有的节点分别编号为\(1, 2, 3, …, n\)。对于编号为\(v\)的节点,定义\(t(v)\)\(v\)的后代中所有编号小于\(v\)的节点个数。求\(t(1), t(2), t(3), …, t(n)\)

这题的算法太美妙了!

我们求这棵树的DFS序和逆DFS序。

211605173127192.png

DFS序:7 10 14 2 13 1 9 11 6 5 8 3 15 12 4
逆DSF序:7 4 3 12 15 9 6 8 5 11 1 10 14 13 2

然后用神奇的加减法就可以得到\(t(v)\)了:
\(t(v)=f(v,\)DFS序列中\(v\)之后的部分\()+f(v,\)逆DFS序列中\(v\)之后的部分\()+f(v,\)\(v\)的所有祖先\()-v+1\)

然后用个栈和树状数组搞搞就算出来了。时间复杂度:\(O(n \log n)\)

其实我觉得可以用DFS序和Splay就可以搞出来了,囧。

问题五:问题二的遗留问题

说实话,我觉得论文里的”超级父亲“好像比较显然。

3.图结构的化简

问题六:ural 1557 Network Attack

给定一个无向连通图,若从中删去两条边能使它不连通,求所有这样的方案的总数。图点数n边数m。

先做一棵DFS树,满足条件的两条边有且只有以下两种情况:

211610196712855.png

问题七:ural 1569 Networking the “Iset”

问题描述:输入一个无向图\(G=(V,E)\),求这个图的直径最小生成树。

首先有个很有价值的结论:当属的直径长为偶数,树的中心是唯一;当树的直径长为奇数,树的中心是唯二的。

证明:定义:l(v)=max{d(u,.v)|u,v是一个图中的点}。当树的直径为2d。设有一条直径是AB,AB中点是P。一方面,对于任意一个点C,设AB上距离C最近的点位Q,不妨Q在AP上,则CP=BC-BP≤AB-BP=d ,同时AP=BP=d ,所以l(P)= d。另一方面,对于任意一个不是P的点C,设AB上距离C最近的点位Q,不妨Q在AP上,则BC=BP+PQ+QC>d ,所以l(C)>d 。所以,P就是这棵树的唯一的中心。

奇数同理。

然后我们可以枚举中心了,之后来一个BFS树即可。

转载于:https://www.cnblogs.com/wangck/p/4444601.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值