(五)分数阶微分方程的解法及其适定性问题介绍


a ) 为此介绍一些常见的变换及其性质
Laplace变换的定义为
$$ \mathscr{L} \{f(t)\}=\int_{0}^{\infty}f(t)e^{-st}dt$$
Laplace反演变换公式为
$$\mathscr{L}^{-1}F(s)=\int_{0}^{\infty}F(s)e^{st}ds $$
定义卷积
$$f(t)\ast g(t)=\int_{0}^{t}f(t-\tau)g(\tau)d\tau=\int_{0}^{t}f(t)g(t-\tau)d\tau=g(t) \ast f(t)$$
易得卷积定理
$$\mathscr{L}\{f(t)\ast g(t)\}=F(s)G(s)$$
$$\mathscr{L}^{-1}\{F(s)G(s)\}=f(t)\ast g(t)$$
$n$阶导数的$Laplace$变换公式
$$\mathscr{L}\{D^{n}f(x)\}=s^{n}F(s)-\sum_{k=0}^{n-1}s^{k}D^{n-k-1}f(0)$$
证明:不断地使用分部积分法即可。注意这个式子的特征是第一项的指标和是$n$,第二项的指标和是$n-1$.
特别地,若$D^{k}f(0)=0 (k=0,1,2\cdots,n-1)$则
$$\mathscr{L}\{D^{n}f(x)\}=s^{n}\mathscr{L}\{f(x)\}$$
由此得$Riemann-Liouville$型分数阶导数的Laplace变换为
$$\mathscr{L}\{_{0}^{RL}D_{t}^{\alpha}f(x)\}=s^{\alpha}F(s)-\sum_{k=0}^{n-1}s^{k}D^{\alpha-k-1}f(0)$$
其中$n-1\leq \alpha <n$.第一项指标和为$\alpha$, 第二项指标和为$\alpha-1$.式子中含有分数阶初值.
证明:
由定义知
$$D^{\alpha}f(x)=D^{n}D^{-(n-\alpha)}f(x)=D^{n}g(x)$$
其中
$$g(x)=D^{-(n-a)}f(x)=\frac{x^{n-\alpha-1}}{\Gamma(n-\alpha)}\ast f(x)$$
由$n$阶导数的Laplace变换公式得
$$\mathscr{L}\{_{0}^{RL}D_{t}^{\alpha}\}=s^{n}G(s)-\sum_{k=0}^{n-1}s^{k}[D^{n-k-1}g(s)|_{s \to 0^{+}}]$$
只要计算$G(s)$即可,利用卷积公式有
$$G(s)=\mathscr{L}\{\frac{x^{n-\alpha-1}}{\Gamma(n-\alpha)}\}F(s)=s^{\alpha-n}F(s)$$
代入上式既得要得的结论.
特殊地,
当$0<\alpha<1$时有结论
$$\mathscr{L}\{_{0}^{RL}D_{t}^{\alpha}\}=s^{\alpha}F(s)-D^{\alpha-1}f(0)$$
当$1<\alpha<2$时有结论
$$\mathscr{L}\{_{0}^{RL}D_{t}^{\alpha}\}=s^{\alpha}F(s)-sD^{\alpha-2}f(0)-D^{\alpha-1}f(0)$$

从上面的证明过程我们也可以看到分数阶积分的Laplace变换为
$$\mathscr{L}\{D^{-\alpha}f(x)\}=\mathscr{L}\{\frac{x^{\alpha-1}}{\Gamma(\alpha)}\}F(s)=s^{-\alpha}F(s)$$

$Caputo$型的分数阶导数为
$$\mathscr{L}\{_{0}^{C}D_{t}^{\alpha}f(x)\}=s^{\alpha}F(s)-\sum_{k=0}^{n-1}s^{a-k-1}D^{k}f(0)$$
其中第一项指标和为$\alpha$,第二项指标和为$\alpha-1$,不含分数阶初值.
证明:利用分数阶积分的Laplace变换和$n$阶导数的Laplace变换得
$$\mathscr{L}\{ {}_{0}^{C}D_{t}^{\alpha}f(x)\}=\mathscr{L}\{D^{-(n-\alpha)}D^{n}f(x\}=s^{a-n}[s^{n}F(s)-\sum_{k=0}^{n-1}s^{n-k-1}D^{k}f(0)]$$
Fourier变换的定义为
$$\mathscr{F}\{f(x)\}=\int_{-\infty}^{+\infty}e^{-i\omega x}f(x)dx$$
$$\mathscr{F}^{-1}\{F(\omega)\}=\frac{1}{2\pi}\int_{-\infty}^{+\infty}F(\omega)e^{i \omega x}dk$$
$n$阶导数的Fourier变换为
$$\mathscr{F}\{D^{n}f(x)\}=(-i\omega)^{n}F(\omega)$$
证明:不断地采用分部积分法即可.

我们考虑如下的$Riemann-Liouville$型和$Caputo$型分数阶导数的Fourier变换
$$\mathscr{F}\{_{-\infty}^{RL}D_{t}^{\alpha}f(x)\}=$$
$$\mathscr{F}\{_{-\infty}^{C}D_{t}^{\alpha}f(x)\}=$$

另一种常用的变换是Millin变换,Millin变换的定义为
$$\mathscr{M}\{f(t)\}=\int_{0}^{+\infty}t^{s-1}f(t)dt$$
Millin逆变换的定义为
$$f(t)=\frac{1}{2\pi i}\int_{a-i\infty}^{a+i\infty}t^{-s}F(s)ds$$

  • 0
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值