『TensorFlow』从磁盘读取数据

十图详解TensorFlow数据读取机制

一、输入流水线读取数据流程

1). 创建文件名列表

相关函数:tf.train.match_filenames_once

2). 创建文件名队列

相关函数:tf.train.string_input_producer

3). 创建Reader读取数据

 tf.ReaderBasetf.TFRecordReadertf.TextLineReadertf.WholeFileReadertf.IdentityReader 、 tf.FixedLengthRecordReader

4).创建decoder解码器转换格式

tf.decode_csvtf.decode_rawtf.image.decode_image

5). 创建样例队列

相关函数:tf.train.shuffle_batch

二、常用Reader、decoder介绍

CSV文件读取

阅读器:tf.TextLineReader

解析器:tf.decode_csv

二进制文件读取

阅读器:tf.FixedLengthRecordReader

解析器:tf.decode_raw

图像文件读取

阅读器:tf.WholeFileReader

解析器:tf.image.decode_image, tf.image.decode_gif, tf.image.decode_jpeg, tf.image.decode_png

TFRecords文件读取

阅读器:tf.TFRecordReader

解析器:tf.parse_single_example

又或者使用slim提供的简便方法slim.dataset.Dataset以及slim.dataset_data_provider.DatasetDataProvider方法,一般slim.dataset.Dataset作为函数返回,需要接收Reader和Decoder作为参数。

def get_split(record_file_name, num_sampels, size):
    reader = tf.TFRecordReader

    keys_to_features = {
        "image/encoded": tf.FixedLenFeature((), tf.string, ''),
        "image/format": tf.FixedLenFeature((), tf.string, 'jpeg'),
        "image/height": tf.FixedLenFeature([], tf.int64, tf.zeros([], tf.int64)),
        "image/width": tf.FixedLenFeature([], tf.int64, tf.zeros([], tf.int64)),
    }

    items_to_handlers = {
        "image": slim.tfexample_decoder.Image(shape=[size, size, 3]),
        "height": slim.tfexample_decoder.Tensor("image/height"),
        "width": slim.tfexample_decoder.Tensor("image/width"),
    }

    decoder = slim.tfexample_decoder.TFExampleDecoder(
        keys_to_features, items_to_handlers
    )
    return slim.dataset.Dataset(
        data_sources=record_file_name,
        reader=reader,
        decoder=decoder,
        items_to_descriptions={},
        num_samples=num_sampels
    )


def get_image(num_samples, resize, record_file="image.tfrecord", shuffle=False):
    provider = slim.dataset_data_provider.DatasetDataProvider(
        get_split(record_file, num_samples, resize), # slim.dataset.Dataset 做参数
        shuffle=shuffle
    )
    [data_image] = provider.get(["image"])  # Provider通过TFR字段获取batch size数据
    return data_image

三、以图片文件为例

filename_queue = tf.train.string_input_producer(filenames, 
                                                shuffle=shuffle, num_epochs=epochs)
                                                reader = tf.WholeFileReader()
_, img_bytes = reader.read(filename_queue)
image = tf.image.decode_png(img_bytes, channels=3) 
        if png else tf.image.decode_jpeg(img_bytes, channels=3)

1.建立文件名队列

filename_queue = tf.train.string_input_producer(filenames)

2.阅读器初始化 & 单次读取规则设定

# 初始化阅读器
reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
# 指定被阅读文件
result.key, value = reader.read(filename_queue)

3.单次读取数据decode

# Convert from a string to a vector of uint8 that is record_bytes long.
# read出来的是一个二进制的string,将它解码依照uint8格式解码
record_bytes = tf.decode_raw(value, tf.uint8)
…… ……

 由于读取来的tensor不具有静态shape,需要使用tensor.set_shape()指定shape(或者在处理中显示的赋予shape如使用reshape等函数),否则无法建立图

read_input.label.set_shape([1])

4.输入入网络

将最后的规则tensor传入batch生成池节点中,输出的张量可以直接feed进网络

images_train, labels_train = cifar10_input.distorted_inputs(data_dir=data_dir,
                                                            batch_size=batch_size)

…… ……

image_batch, label_batch = sess.run([images_train, labels_train])
_, loss_value = sess.run(
           [train_op, loss],
                   feed_dict={image_holder:image_batch, label_holder:label_batch})

5.初始化队列(相关的线程控制器组件添加也在这里)

# 启动数据增强队列
tf.train.start_queue_runners()

附上线程控制组件使用示意,

import tensorflow as tf

sess = tf.Session()
coord = tf.train.coordinator()
threads = tf.train.start_queue_runners(sess=sess,coord=coord)

# 训练过程

coord.request_stop()
coord.join(threads)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值