实战深度强化学习DQN-理论和实践

1、Q-learning回顾

Q-learning 的 算法过程如下图所示:

image

在Q-learning中,我们维护一张Q值表,表的维数为:状态数S * 动作数A,表中每个数代表在当前状态S下可以采用动作A可以获得的未来收益的折现和。我们不断的迭代我们的Q值表使其最终收敛,然后根据Q值表我们就可以在每个状态下选取一个最优策略。

Q值表的更新公式为:

image

公式中,Q(S,A) 我们可以称做Q估计值,即我们当前估计的Q值,而:

image

称为Q-target,即我们使用贝尔曼方程加贪心策略认为实际应该得到的奖励,我们的目标就是使我们的Q值不断的接近Q-target值。

2、深度Q网络(Deep - Q - Network)

2.1 DQN简介

为什么会出现DQN呢

在普通的Q-learning中,当状态和动作空间是离散且维数不高时可使用Q-Table储存每个状态动作对的Q值,而当状态和动作空间是高维连续时,使用Q-Table不现实。

两篇DQN奠基之作

[1]Playing Atari with Deep Reinforcement Learning
[2]Human-level control through deep reinforcement learning

如何将原始的Q-learning转换成深度学习问题

将Q-Table的更新问题变成一个函数拟合问题,相近的状态得到相近的输出动作。如下式,通过更新参数 θ 使Q函数逼近最优Q值 。因此,DQN就是要设计一个神经网络结构,通过函数来拟合Q值,即:

image

2.2 DL和RL结合带来的问题

1、DL需要大量带标签的样本进行监督学习;RL只有reward返回值,而且伴随着噪声,延迟(过了几十毫秒才返回),稀疏(很多State的reward是0)等问题;
2、DL的样本独立;RL前后state状态相关;
3、DL目标分布固定;RL的分布一直变化,比如你玩一个游戏,一个关卡和下一个关卡的状态分布是不同的,所以训练好了前一个关卡,下一个关卡又要重新训练;
4、过往的研究表明,使用非线性网络表示值函数时出现不稳定等问题。

2.3 DQN解决问题方法

那么DQN是如何解决上述问题的呢?

1、通过Q-Learning使用reward来构造标签(对应问题1)
2、通过experience replay(经验池)的方法来解决相关性及非静态分布问题(对应问题2、3)
3、使用一个神经网络产生当前Q值,使用另外一个神经网络产生Target Q值(对应问题4)

构造标签

对于函数优化问题,监督学习的一般方法是先确定Loss Function,然后求梯度,使用随机梯度下降等方法更新参数。DQN则基于Q-Learning来确定Loss Function。我们想要使q-target值和q-eval值相差越小越好。DQN中的损失函数是:

image

这里yi是根据上一个迭代周期或者说target-net网络的参数计算出的q-target值,跟当前网络结构中的参数无关,yi的计算如下:

image

这样,整个目标函数就可以通过随机梯度下降方法来进行优化:

image

经验回放

经验池的功能主要是解决相关性及非静态分布问题。具体做法是把每个时间步agent与环境交互得到的转移样本 (st,at,rt,st+1) 储存到回放记忆单元,要训练时就随机拿出一些(minibatch)来训练。(其实就是将游戏的过程打成碎片存储,训练时随机抽取就避免了相关性问题)

双网络结构

在Nature 2015版本的DQN中提出了这个改进,使用另一个网络(这里称为target_net)产生Target Q值。具体地,Q(s,a;θi) 表示当前网络eval_net的输出,用来评估当前状态动作对的值函数;Q(s,a;θ−i) 表示target_net的输出,代入上面求 TargetQ 值的公式中得到目标Q值。根据上面的Loss Function更新eval_net的参数,每经过N轮迭代,将MainNet的参数复制给target_net。

引入target_net后,再一段时间里目标Q值使保持不变的,一定程度降低了当前Q值和目标Q值的相关性,提高了算法稳定性。

2.4 DQN算法流程

NIPS 2013版

image

Nature 2015版

image

可以看到,两版的DQN都使用了经验池,而2015版的DQN增加了target-net,提高了算法稳定性。

3、DQN实现DEMO

找了很多DQN的例子,有原版的实现Atari的,也有Flappy Bird的,但是最简单的还是莫烦大神的Demo,github地址是:https://github.com/MorvanZhou/Reinforcement-learning-with-tensorflow

在介绍整个Demo前,我们介绍两种DQN的实现方式,一种是将s和a输入到网络,得到q值,另一种是只将s输入到网络,输出为s和每个a结合的q值。这里莫烦大神的代码采取了后一种方式。

如果你对DQN的原理有比较深刻的认识,那么读莫烦大神的代码也并不是十分困难。这里我们想要实现的效果类似于寻宝。

image

其中,红色的方块代表寻宝人,黑色的方块代表陷阱,黄色的方块代表宝藏,我们的目标就是让寻宝人找到最终的宝藏。

这里,我们的状态可以用横纵坐标表示,而动作有上下左右四个动作。使用tkinter来做这样一个动画效果。宝藏的奖励是1,陷阱的奖励是-1,而其他时候的奖励都为0。

接下来,我们重点看一下我们DQN相关的代码。

定义相关输入

这了,我们用s代表当前状态,用a代表当前状态下采取的动作,r代表获得的奖励,s_代表转移后的状态。

self.s = tf.placeholder(tf.float32,[None,self.n_features],name='s')
self.s_ = tf.placeholder(tf.float32,[None,self.n_features],name='s_')
self.r = tf.placeholder(tf.float32,[None,],name='r')
self.a = tf.placeholder(tf.int32,[None,],name='a')

经验池

def store_transition(self,s,a,r,s_):
     if not hasattr(self, 'memory_counter'):
         self.memory_counter = 0
     # hstack:Stack arrays in sequence horizontally
     transition = np.hstack((s,[a,r],s_))
     index = self.memory_counter % self.memory_size
     self.memory[index,:] = transition
     self.memory_counter += 1

双网络结构

target_net和eval_net的网络结构必须保持一致,这里我们使用的是两层全链接的神经网络,值得注意的一点是对于eval_net来说,网络的输入是当前的状态s,而对target_net网络来说,网络的输入是下一个状态s_,因为target_net的输出要根据贝尔曼公式计算q-target值,即

image

代码如下:

w_initializer, b_initializer = tf.random_normal_initializer(0., 0.3), tf.constant_initializer(0.1)

# ------------------ build evaluate_net ------------------
with tf.variable_scope('eval_net'):
    e1 = tf.layers.dense(self.s,20,tf.nn.relu,kernel_initializer=w_initializer,
                         bias_initializer=b_initializer,name='e1'
                         )

    self.q_eval = tf.layers.dense(e1,self.n_actions,kernel_initializer=w_initializer,
                                  bias_initializer=b_initializer,name='q')

# ------------------ build target_net ------------------

with tf.variable_scope('target_net'):
    t1 = tf.layers.dense(self.s_, 20, tf.nn.relu, kernel_initializer=w_initializer,
                         bias_initializer=b_initializer, name='t1')
    self.q_next = tf.layers.dense(t1, self.n_actions, kernel_initializer=w_initializer,
                                  bias_initializer=b_initializer, name='t2')

每隔一定的步数,我们就要将target_net中的参数复制到eval_net中:

t_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,scope='target_net')
e_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,scope='eval_net')

with tf.variable_scope('soft_replacement'):
      self.target_replace_op = [tf.assign(t,e) for t,e in zip(t_params,e_params)]

计算损失并优化

首先,对于eval_net来说,我们只要得到当前的网络输出即可,但是我们定义的网络输出是四个动作对应的q-eval值,我们要根据实际的a来选择对应的q-eval值,这一部分的代码如下:

with tf.variable_scope('q_eval'):
    # tf.stack
    #a = tf.constant([1,2,3])
    # b = tf.constant([4,5,6])
    # c = tf.stack([a,b],axis=1)
    # [[1 4]
    #  [2 5]
    # [3 6]]
    a_indices = tf.stack([tf.range(tf.shape(self.a)[0], dtype=tf.int32), self.a], axis=1)
    # 用indices从张量params得到新张量
    # indices = [[0, 0], [1, 1]]
    # params = [['a', 'b'], ['c', 'd']]
    # output = ['a', 'd']
    # 这里self.q_eval是batch * action_number,a_indices是batch * 1,也就是说选择当前估计每个动作的Q值
    self.q_eval_wrt_a = tf.gather_nd(params=self.q_eval, indices=a_indices)

中间有几个函数不太了解的,上面都有详细的注释,如果还不是很理解的话,大家可以百度或者阅读相应函数的源码。

对于target_net网络来说,我们要根据下面的式子来计算q-target值:

image

第一部分的R我们是已经得到了的,剩下的就是根据贪心策略选择四个输出中最大的一个即可:

with tf.variable_scope('q_target'):
    q_target = self.r + self.gamma * tf.reduce_max(self.q_next,axis=1,name='Qmax_s_')
    # 一个节点被 stop之后,这个节点上的梯度,就无法再向前BP了
    self.q_target = tf.stop_gradient(q_target)

接下来,我们就可以定义我们的损失函数并选择优化器进行优化:

with tf.variable_scope('loss'):
    self.loss = tf.reduce_mean(tf.squared_difference(self.q_target,self.q_eval_wrt_a,name='TD_error'))

with tf.variable_scope('train'):
    self._train_op = tf.train.RMSPropOptimizer(self.lr).minimize(self.loss)

网络的训练

每隔一定的步数,我们就要将eval_net中的参数复制到target_net中,同时我们要从经验池中选择batch大小的数据输入到网络中进行训练。

def learn(self):
    if self.learn_step_counter % self.replace_target_iter == 0:
        self.sess.run(self.target_replace_op)
        print('\ntarget_params_replaced\n')

    if self.memory_counter > self.memory_size:
        sample_index = np.random.choice(self.memory_size,size=self.batch_size)
    else:
        sample_index = np.random.choice(self.memory_counter,size = self.batch_size)

    batch_memory = self.memory[sample_index,:]

    _,cost = self.sess.run(
        [self._train_op,self.loss],
        feed_dict={
            self.s:batch_memory[:,:self.n_features],
            self.a:batch_memory[:,self.n_features],
            self.r:batch_memory[:,self.n_features+1],
            self.s_:batch_memory[:,-self.n_features:]
        }
    )

剩下的代码就不介绍啦,大家不妨去github上fork大神的代码,跟着进行练习,相信会对DQN的原理有一个更进一步的认识。

原文发布时间为:2018-07-29
本文作者:石晓文
本文来自云栖社区合作伙伴“ Python爱好者社区”,了解相关信息可以关注“ Python爱好者社区

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
你好!对于无人机路径规划的强化学习实战,你可以按照以下步骤进行: 1. 确定问题:首先,明确无人机路径规划的具体问题,例如在给定的环境中,无人机如何选择最优路径来完成特定任务。 2. 状态与动作定义:将环境抽象为状态空间,无人机在每个状态下可以选择的动作定义为动作空间。例如,状态可以包括无人机当前位置、目标位置、障碍物信息等,动作可以是无人机的移动指令。 3. 建立奖励函数:设计一个奖励函数来评估每个状态下的行动。奖励函数应该能够鼓励无人机选择对任务有利的路径,并惩罚不良行为。例如,可以给到达目标位置的行动一个正向奖励,给与碰撞障碍物或者偏离目标的行动一个负向奖励。 4. 强化学习算法选择:选择适合无人机路径规划问题的强化学习算法。常用的算法包括Q-learning、Deep Q-Network (DQN)、Proximal Policy Optimization (PPO)等。 5. 构建训练环境:根据定义的状态、动作和奖励函数,构建一个仿真环境来进行训练。这个仿真环境可以模拟无人机的运动和环境信息。 6. 训练模型:使用选定的强化学习算法,在训练环境中对无人机路径规划模型进行训练。通过与环境的交互,逐步优化模型的策略,使其能够选择最优的路径。 7. 模型评估与优化:训练完成后,对训练得到的模型进行评估。可以使用一些指标来衡量模型在路径规划任务上的性能,如成功率、路径长度等。如果需要改进,可以进一步调整参数或尝试其他强化学习算法。 以上是一个基本的无人机路径规划强化学习实战流程,具体的实施过程可能因问题的复杂性而有所不同。希望对你有所帮助!如果还有其他问题,请随时提问。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值