函数的对称性

一、常见结论

  • 注意:此时只涉及一个函数,是函数自身具有的对称性,而不是两个函数之间的对称;

1、若函数\(y=f(x)\)关于原点\((0,0)\)对称,则\(f(-x)=-f(x)\)\(f(x)+f(-x)=0\),反之亦成立;

2、若函数\(y=f(x)\)关于直线\(x=a\)对称,则\(f(a+x)=f(a-x)\),反之亦成立;

3、若函数\(y=f(x)\)满足\(f(a+x)=f(b-x)\),则其图像关于直线\(x=\cfrac{a+b}{2}\)对称,反之亦成立;

4、若函数\(y=f(x)\)图像是关于点\(A(a,b)\)对称,则充要条件是\(f(x)+f(2a-x)=2b\)

二、给出方式

  • 1、以图像的形式给出;

解读图像,从图像中我们就可以找出对称轴。

  • 2、以奇偶性的形式给出[奇偶性是对称性的特例];

比如奇函数,\(f(-x)=-f(x)\)或者\(f(-x)+f(x)=0\Longrightarrow\) 对称中心为\((0,0)\)

比如偶函数,\(f(-x)=f(x)\)或者\(f(-x)-f(x)=0\Longrightarrow\) 对称轴为\(x=0\)

  • 3、以奇偶性的拓展形式给出;

比如\(f(2+x)+f(-x)=2\),则对称中心为\((1,1)\)

比如\(f(x)=f(4-x)\),则对称轴为\(x=2\)原因解释

  • 4、以周期性+奇偶性的形式给出;

如,已知函数\(f(x)\)是奇函数,且满足\(f(x+4)=-f(x)\)

则由\(\begin{align*} f(x+4)&=-f(x) \\ f(-x)&=-f(x)\end{align*}\) \(\big\}\Longrightarrow f(x+4)=f(-x)\Longrightarrow\)对称轴是\(x=2\)

三、对称性应用

例01【2016高考理科数学全国卷2第12题】【共用对称中心】
已知函数\(f(x)(x\in R)\)满足\(f(-x)=2-f(x)\),若函数\(y=\cfrac{x+1}{x}\)与函数\(y=f(x)\)图像的交点为\((x_1,y_1),(x_2,y_2),\cdots,(x_m,y_m)\),则\(\sum\limits_{i=1}^m{(x_i+y_i)}\)的值为【】

A、\(0\) \(\hspace{2cm}\) B、\(m\) \(\hspace{2cm}\) C、\(2m\) \(\hspace{2cm}\) D、 \(4m\)

分析:由题目可知\(f(x)+f(-x)=2\),即函数\(f(x)\)图像关于点\((0,1)\)对称,

而函数\(y=\cfrac{x+1}{x}=1+\cfrac{1}{x}\)图像也关于点\((0,1)\)对称,即两个函数图像有相同的对称中心,

那么二者的交点个数一定有偶数个,如图所示, 可知对横坐标而言有\(\sum\limits_{i=1}^m{x_i}=0\)

而对纵坐标而言,成对的点的个数是\(\cfrac{m}{2}\)个,他们中的每一对满足\(\cfrac{y_1+y_m}{2}=1\)

\(y_1+y_m=2\),故\(\sum\limits_{i=1}^m{y_i}=2\cdot \cfrac{m}{2}=m\)

\(\sum\limits_{i=1}^m{(x_i+y_i)}=\sum\limits_{i=1}^m{x_i}+\sum\limits_{i=1}^m{y_i}=m\),故选B。

例02【2016高考文科数学全国卷2第12题】【共用对称轴】
已知函数\(f(x)(x\in R)\)满足\(f(x)=f(2-x)\),若函数\(y=|x^2-2x-3|\)与函数\(y=f(x)\)图像的交点为\((x_1,y_1),(x_2,y_2),\cdots,(x_m,y_m)\),则\(\sum\limits_{i=1}^m{x_i}\)的值为【】

A、\(0\) \(\hspace{2cm}\) B、\(m\) \(\hspace{2cm}\) C、\(2m\) \(\hspace{2cm}\) D、 \(4m\)
992978-20171125162022593-470763010.png

分析:函数\(f(x)(x\in R)\)满足\(f(x)=f(2-x)\),则函数的对称轴是直线\(x=1\)

而函数\(y=|x^2-2x-3|=|(x-1)^2-4|\)的对称轴也是直线\(x=1\),作出函数的图像如右图所示,

则二者的交点个数\(m\)一定是偶数个,两两配对的个数为\(\cfrac{m}{2}\),比如AB配对,

则有\(\cfrac{x_1+x_m}{2}=1\)\(x_1+x_m=2\),故\(\sum\limits_{i=1}^m{x_i}=\cfrac{m}{2}\cdot 2=m\),故选B。

例03【2017全国卷1文科第9题高考真题】已知函数\(f(x)=lnx+ln(2-x)\),则【】

$A.在(0,2)上单调递增$ $ B.在(0,2)上单调递减$
$C.y=f(x)的图像关于直线x=1对称$ $D.y=f(x)的图像关于点(1,0)对称$

A、\(f(x)\)\((0,2)\)单调递增 \(\hspace{5cm}\) B、\(f(x)\)\((0,2)\)单调递减 \(\hspace{2cm}\)

C、\(y=f(x)\)的图像关于直线\(x=1\)对称 \(\hspace{2cm}\) D、\(y=f(x)\)的图像关于点\((1,0)\)对称

分析:由于函数\(f(x)\)是复合函数,定义域要使\(x>0,2-x>0\),即定义域是\((0,2)\)

\(f(x)=ln[x(2-x)]=ln[-(x-1)^2+1]\),则由复合函数的单调性法则可知,

\((0,1)\)上单增,在\((1,2)\)上单减,故排除A,B;

若函数\(y=f(x)\)关于点\((1,0)\)对称,则函数\(f(x)\)必然满足关系:\(f(x)+f(2-x)=0\)

若函数\(y=f(x)\)关于直线\(x=1\)对称,则函数\(f(x)\)必然满足关系:\(f(x)=f(2-x)\)

接下来我们用上述的结论来验证,由于\(f(x)=lnx+ln(2-x)\)

\(f(2-x)=ln(2-x)+ln(2-(2-x))=ln(2-x)+lnx\),即满足\(f(x)=f(2-x)\),故函数\(y=f(x)\)的图像关于直线\(x=1\)对称,选C;

再来验证D,发现\(f(x)+f(2-x)=2[lnx+ln(2-x)]\neq 0\),D选项不满足。故选C。

例04【2019届高三理科数学三轮模拟题】已知函数\(f(x)=e^x+e^{2-x}\),则\(f(x)\)【】

$A.在R上递增$ $ B.在R上递减$ $C.关于点(1,2e)对称$ $D.关于直线x=1对称$

提示:由于函数满足\(f(x)=f(2-x)\),故函数\(f(x)\)关于直线\(x=1\)对称,选\(D\)

引申:\(f(x)=e^x+e^{1-x}\)\(g(x)=e^x+e^{x}\)

转载于:https://www.cnblogs.com/wanghai0666/p/9744631.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值