c语言 做输出两个字整数和,C语言动态规划(6)___传纸条(Vijos P1493)

描述:

小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题。一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了。幸运的是,他们可以通过传纸条来进行交流。纸条要经由许多同学传到对方手里,小渊坐在矩阵的左上角,坐标(1,1),小轩坐在矩阵的右下角,坐标(m,n)。从小渊传到小轩的纸条只可以向下或者向右传递,从小轩传给小渊的纸条只可以向上或者向左传递。

在活动进行中,小渊希望给小轩传递一张纸条,同时希望小轩给他回复。班里每个同学都可以帮他们传递,但只会帮他们一次,也就是说如果此人在小渊递给小轩纸条的时候帮忙,那么在小轩递给小渊的时候就不会再帮忙。反之亦然。

还有一件事情需要注意,全班每个同学愿意帮忙的好感度有高有低(注意:小渊和小轩的好心程度没有定义,输入时用0表示),可以用一个0-100的自然数来表示,数越大表示越好心。小渊和小轩希望尽可能找好心程度高的同学来帮忙传纸条,即找到来回两条传递路径,使得这两条路径上同学的好心程度只和最大。现在,请你帮助小渊和小轩找到这样的两条路径。

输入格式:

输入第一行有2个用空格隔开的整数m和n,表示班里有m行n列(1<=m,n<=50)。 接下来的m行是一个m*n的矩阵,矩阵中第i行j列的整数表示坐在第i行j列的学生的好心程度。每行的n个整数之间用空格隔开。

输出格式:

输出共一行,包含一个整数,表示来回两条路上参与传递纸条的学生的好心程度之和的最大值。

样例输入:

3 3

0 3 9

2 8 5

5 7 0

样例输出:

34

我们转化一下思想,题目中说由左上方到右下方来回,我们可以看作是从左上方找两条不相交的路径到右下方。这里我们可以好比是两个纸条同时从左上方向右下方传,只要保证在同一时刻两个纸条不在同一个人手里,那么我们就能保证两个字条的路径不相交.

确定算法: DP(动态规划)

状态:当前时刻的两个字条的坐标。

状态转移方程式 :

dp[i][j][x][y]=

max{ dp[i-1][j][x-1][y],dp[i-1][j][x][y-1],dp[i][j-1][x-1][y],dp[i][j-1][x][y-1]}+num[i][j]+num[x][y]

为了保证两个字条是同步传递的,所以方程式要加一个限定条件 ( i + j = x + y )☆

#include

int dp[51][51][51][51];

int num[51][51];

int max(int a,int b,int c,int d)

{

if(a>b&&a>c&&a>d)return a;

if(b>a&&b>c&&b>d)return b;

if(c>b&&c>a&&c>d)return c;

return d;

}

int main()

{

int n,m;

int i,j,x;

scanf("%d%d",&n,&m);

for(i=1;i<=n;i++)

for(j=1;j<=m;j++)

scanf("%d",&num[i][j]);

for(i=1;i<=n;i++)

{

for(j=1;j<=m;j++)

{

for(x=1;x<=n;x++)

{

int y=i+j-x;

if(i>x&&y>=0)

{

dp[i][j][x][y]=max(dp[i-1][j][x-1][y],dp[i-1][j][x][y-1],dp[i][j-1][x-1][y],dp[i][j-1][x][y-1])++num[i][j]+num[x][y];

}

}

}

}

printf("%d\n",dp[n][m-1][n-1][m]);

return 0;

}

代码优为三维:

#include

#include

#include

using namespace std;

int mpt[52][52],dp[52][52][52],n,m;

int max(int a,int b,int c,int d)

{

int e,f;

e=(a>b)? a:b;

f=(c>d)? c:d;

return (e>f)? e:f;

}

int main()

{

int i,j,x;

cin>>n>>m;

for(i=1;i<=n;i++)for(j=1;j<=m;j++)cin>>mpt[i][j];

for(i=1;i<=n;i++){

for(j=1;j<=m;j++){

for(x=1;x

dp[i][j][x]=max(dp[i-1][j][x-1],dp[i-1][j][x],dp[i][j-1][x-1],dp[i][j-1][x])+mpt[i][j]+mpt[x][i+j-x];

}

}

}

cout<

return 0;

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值