MXNet动手学深度学习笔记:GPU加速计算

#coding:utf-8
'''
NDArray在GPU上计算
'''

from mxnet import nd
from mxnet.gluon import nn
import mxnet as mx

a = nd.array([1,2,3],ctx=mx.gpu())
b = nd.zeros((3,2),ctx=mx.gpu())
x = nd.array([1,2,3])

y = x.copyto(mx.gpu())

z = x.as_in_context(mx.gpu())

print('a = ',a)
print('b = ',b)
print('x = ',x)
print('y = ',y)
print('z = ',z)

# Gluon的GPU计算

net = nn.Sequential()
net.add(nn.Dense(1))
net.initialize(ctx = mx.gpu())

data = nd.random.uniform(shape=(3,2),ctx=mx.gpu())
print(net(data))

# 模型的参数也储存在GPU上
print(net[0].weight.data())

 

转载于:https://my.oschina.net/wujux/blog/1809880

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值