《微分方程_附应用及历史注记》Page 4.

$xy=\log y +c$,则
\begin{equation}
\label{eq:25.15.13}
\frac{dy}{dx}=\frac{y^2}{1-xy}
\end{equation}


证明:令$F(x,y)=xy-\log y-c$.当$F(x_0,y_0)=0$时,可得$x_0=\frac{\log y_{0}+c}{y_{0}}$.易得
\begin{equation}
\label{eq:25.15.14}
\frac{\partial F}{\partial y}(x,y)=x-\frac{1}{y}
\end{equation}
因此
\begin{equation}
\label{eq:25.15.23}
\frac{\partial F}{\partial y}(x_0,y_0)=x_0-\frac{1}{y_0}
\end{equation}
当$\frac{\partial F}{\partial y}(x_0,y_0)\neq 0$时,$x_0y_0\neq 1$.此时,根据隐函数定理,在$(x_0,y_0)$的足够小的邻域$D$内,$\forall (x,y)\in D$,都有
\begin{equation}
\label{eq:25.16.04}
\frac{dy}{dx}=\frac{y^2}{1-xy}
\end{equation}
当$\frac{\partial F}{\partial y}(x_0,y_0)=0$时,可得$y_0=e^{1-c},x_0=\frac{1}{e^{1-c}}$.函数在这个点处不可导(为什么?提示:考虑$x$对$y$的导数,为0.再根据反函数定理).(当$c=1$时情形如图

 

转载于:https://www.cnblogs.com/yeluqing/archive/2012/10/25/3828234.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值