文章目录
1. 三类典型的偏微分方程
1.1 波动方程
(1)一维波动方程
一根紧拉着的均匀柔软弦,长为l,两端固定在X轴上的O, L 两点,当它在平衡位置附近做垂直于OL方向的微小横向振动时,求这根弦上各点的运动规律
方程
弦沿垂直方向的位移 u ( x , t ) u(x,t) u(x,t)
∂ u 2 ∂ t 2 = a 2 ∂ u 2 ∂ x 2 + f ( x , t ) \frac{\partial u^2}{\partial t^2 } = a^2 \frac{\partial u^2}{\partial x^2}+f(x,t) ∂t2∂u2=a2∂x2∂u2+f(x,t)
(2)二维波动方程
∂ u 2 ∂ t 2 = a 2 ∂ u 2 ∂ x 2 + b 2 ∂ u 2 ∂ y 2 + f ( x , y , t ) \frac{\partial u^2}{\partial t^2 } = a^2 \frac{\partial u^2}{\partial x^2} + b^2 \frac{\partial u^2}{\partial y^2}+f(x,y,t) ∂t2∂u2=a2∂x2∂u2+b2∂y2∂u2+f(x,y,t)
(3)三维波动方程
∂ u 2 ∂ t 2 = a 2 ∂ u 2 ∂ x 2 + b 2 ∂ u 2