佳能c3320怎么设置接收方_佳能320排超低剂量CT在桡骨远端骨折3D打印中的应用

388a5347ff9a949bf0d4c0577157c274.png b8df9ebd5526f00788e3dacb2b010b7e.png 558a3026856866b84de00ebe07330383.png

作为一名骨肌学组的放射学医师,临床上常遇见四肢六大关节的周围骨折病例,而我们常常采用CT作为首选的检查手段。但是由于四肢骨折发病率高,骨折引起解剖部位的复杂性改变等原因,常规的CT图像并不能完全满足术前评估及医患间沟通。因此,在临床工作中,我们引入了一项新的技术--3D打印技术,来提高影像科医师和骨科医师对骨折的诊疗效率。在临床实践中发现,我们可以利用3D打印模型,从不同方位和角度对骨折进行更直观的观察和测量,这显然提高了医师对术前评估的准确性以及患者对自己病情的了解。这些都是3D打印模型较传统CT图像具有优势的地方。

但我们注意到,3D打印模型源于CT图像,CT图像质量也决定了3D打印模型的质量,而其中辐射剂量是一个影响图像质量的重要参数。有研究表明采用高辐射剂量扫描方案可以消除图像噪声的影响,以满足3D打印模型用于临床诊断的需要。然而,近年来,随着人们对辐射危害认识的不断提高,许多降低辐射剂量的技术应运而生,如低管电压、低管电流和迭代重建技术等。但是低辐射剂量往往伴随着图像质量下降,而这种改变是否进一步影响3D打印模型的质量,我们通过查阅文献,发现国际尚无相关报道,因此我尝试开展了相关科研研究。

科室从2019年引入了佳能医疗集团新一代的宽体320排CT,该CT探测器宽度为16cm,根据我们的使用经验,16cm的z轴覆盖范围满足六大关节周围骨折的扫描宽度,在操作上十分便利。

d12d1a2d1e3078e5b484c01e81d08aa5.png 132a98f587500e729b5c183a5a7ce73a.png

而由于桡骨远端骨折的发生率最高,因此我们的研究从桡骨远端骨折的3D模型开始。利用佳能宽体CT,我们尝试尽可能地把管电压和管电流降到最低(80kV,4mAs),结合AIDR 3D迭代重建技术,发现CT图像质量虽有下降,但并不影响桡骨远端骨折线的评估。而3D打印模型的质量也有类似的改变:虽然在超低剂量组模型的光滑程度有所下降,但并不影响骨折线的呈现。从我们的结果来看,超低剂量组的辐射剂量较常规剂量组(120kV,50mAs)下降了97.1%,但两组之间的诊断敏感性、特异性、阳性预测值和阴性预测值并没有统计学差异。换言之,该低剂量的3D打印方案既使患者所受辐射剂量大幅度降低,又能延续发挥3D打印模型的独特优势(术前评估、医患沟通),可以说是一种双赢的技术。

我们就超低剂量CT在桡骨远端骨折3D打印中的应用各系列参数对比分析,探讨了佳能320排CT进行超低剂量扫描的参数设置,本研究近期被European Journal of Radiology(EJR,IF=2.687)接收。在此过程中,佳能医疗科研合作部徐如林老师在研究开展过程中给予关注与鼓励,在论文修改、选刊及后续返修、回复评审意见等方面给予我们巨大的帮助和指导,在此表示衷心感谢!影像检查一线开展科研工作,意义重大但路阻且长,有幸得到来自佳能专家高水平的支持,由衷感激。

84dfa7cb3aab4a3b85d0933aef69373c.png

图1,该桡骨远端骨折患者首诊时被随机纳入到正常剂量组(A)。但患者在准备接受手术前1天摔倒,并用双手撑地,需再次接受CT检查确认是否有新骨折出现或原有骨折是否有新的移位。在第二次接受CT检查时被随机纳入到了超低剂量组(B)。骨折线的方向(白箭头)和碎骨的位置(黄箭头)在两组中均能清晰显示。两组3D打印模型的质量均满足临床诊断。

d135cb99e07f3301ae05e0952d86ffb2.gif 07de5bc911dc7f763a71d6bdf0dddf66.png

部分参考文献:

1. C. Chen, L. Cai, W. Zheng, J. Wang, X. Guo, H. Chen, The efficacy of using 3D printing models in the treatment of fractures: a randomised clinical trial, BMC Musculoskelet Disord 20(1) (2019) 65.https://doi.org/10.1186/s12891-019-2448-9

2. S. Leng, K. McGee, J. Morris, A. Alexander, J. Kuhlmann, T. Vrieze, C.H. McCollough, J. Matsumoto, Anatomic modeling using 3D printing: quality assurance and optimization, 3D Print Med 3(1) (2017) 6.https://doi.org/10.1186/s41205-017-0014-3

3. H.J. Kang, B.S. Kim, S.M. Kim, Y.M. Kim, H.N. Kim, J.Y. Park, J.H. Cho, Y. Choi, Can Preoperative 3D Printing Change Surgeon's Operative Plan for Distal Tibia Fracture?, Biomed Res Int 2019 (2019) 7059413.https://doi.org/10.1155/2019/7059413

eda94c8897de3ac6bb418c26acb83141.png
好的,针对你的问题,我可以给你提供一个简单的桡骨远端骨折colles、smith和bartonX图像分类代码示例,供你参考: ```python import tensorflow as tf from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras.layers import Input, Conv2D, MaxPooling2D, Flatten, Dense, Dropout from tensorflow.keras.models import Model # 图像大小 img_size = (224, 224) # 数据路径 data_path = "/path/to/data" # 数据增强 train_datagen = ImageDataGenerator( rescale=1./255, # 缩放像素值 rotation_range=20, # 旋转角度范围 width_shift_range=0.2, # 水平方向平移范围 height_shift_range=0.2, # 垂直方向平移范围 shear_range=0.2, # 剪切变换范围 zoom_range=0.2, # 缩放范围 horizontal_flip=True, # 水平翻转 vertical_flip=False, # 垂直翻转 validation_split=0.2 # 划分训练集和验证集 ) # 加载训练集和验证集数据 train_dataset = train_datagen.flow_from_directory( data_path, target_size=img_size, batch_size=32, class_mode='categorical', subset='training' ) val_dataset = train_datagen.flow_from_directory( data_path, target_size=img_size, batch_size=32, class_mode='categorical', subset='validation' ) # 搭建模型 inputs = Input(shape=(img_size[0], img_size[1], 3)) x = Conv2D(32, (3, 3), activation='relu')(inputs) x = MaxPooling2D((2, 2))(x) x = Conv2D(64, (3, 3), activation='relu')(x) x = MaxPooling2D((2, 2))(x) x = Conv2D(128, (3, 3), activation='relu')(x) x = MaxPooling2D((2, 2))(x) x = Flatten()(x) x = Dense(256, activation='relu')(x) x = Dropout(0.5)(x) outputs = Dense(3, activation='softmax')(x) model = Model(inputs=inputs, outputs=outputs) # 编译模型 model.compile( optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'] ) # 训练模型 model.fit( train_dataset, validation_data=val_dataset, epochs=20, verbose=1 ) # 测试模型 test_datagen = ImageDataGenerator(rescale=1./255) test_dataset = test_datagen.flow_from_directory( data_path, target_size=img_size, batch_size=32, class_mode='categorical', shuffle=False ) test_loss, test_acc = model.evaluate(test_dataset, verbose=2) print("Test accuracy:", test_acc) ``` 需要注意的是,这只是一个简单的示例代码,实际应用中需要根据具体的数据集和任务进行适当的修改和调整。同时,也需要注意数据的质量和标注的准确性,以避免模型出现偏差或过拟合的情况。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值