[LibreOJ 3120]【CTS2019】珍珠 【生成函数】【计数】

Description

在这里插入图片描述
在这里插入图片描述

Solution

有一个直观的思路是考虑每种颜色个数的奇偶性,奇数个数的颜色不能超过\(n-2m\)
因此若\(n-2m\geq D\)则答案一定是\(D^n\)

否则由于每种颜色其实没有区别,我们考虑一种颜色为奇数和为偶数的指数型生成函数
奇数是\(e^x-e^{-x}\over 2\),偶数是\(e^x+e^{-x}\over 2\)

我们枚举有多少个奇数的颜色
容易得到
\[Ans=n!\sum\limits_{i=0}^{n-2m}{D\choose i}\left({e^x-e^{-x}\over 2}\right)^i\left({e^x+e^{-x}\over 2}\right)^{D-i}[x^n]\]

我考场上写的是这个式子(和题解的本质相同,不过化起来比较麻烦)

提出一个\(2^{-D}\),把后面的东西二项式展开

\[=2^{-D}n!\sum\limits_{i=0}^{n-2m}{D\choose i}\sum\limits_{p=0}^{i}e^{(2p-i)x}{i\choose p}(-1)^{i-p}\sum\limits_{q=0}^{D-i}e^{(2q+i-D)x}{D-i\choose q}[x^n]\]

此处我们可以枚举\(T=p+q\),并移到最外层

\[=2^{-D}n!\sum\limits_{T=0}^{D}e^{2T-D}\sum\limits_{i=0}^{n-2m}{D\choose i}\sum\limits_{p+q=T}(-1)^{i-p}{i\choose p}{D-i\choose q}[x^n]\]
容易知道\(n!e^{px}[x^n]=p^n\)
把q换成T-p
\[=2^{-D}\sum\limits_{T=0}^{D}(2T-D)^n\sum\limits_{i=0}^{n-2m}\sum\limits_{p=0}^{T}(-1)^{i-p}{D\choose i}{i\choose p}{D-i\choose T-p}\]

考场上的时候我就卡在这里推不动了
实际上那三个组合数可以化开成\({D!\over i!(D-i)!}{i!\over (i-p)!p!}{(D-i)!\over (T-p)!(D-i-T+p)!}\)

分配阶乘,约分,补上一个\((D-T)!T!\over (D-T)!T!\)
可以得到
\[=2^{-D}\sum\limits_{T=0}^{D}(2T-D)^n{D\choose T}\sum\limits_{i=0}^{n-2m}\sum\limits_{p=0}^{T}(-1)^{i-p}{T\choose p}{D-T\choose i-p}\]

可以发现后面是两个二项式卷积的形式
实际上就是\(\left((1+y)^T(1-y)^{D-T}\right)[y^i]\)
后面的就和题解是一样的了。

题解的推法是这样的
\[Ans=n!\sum\limits_{i=0}^{n-2m}\left(y{e^x-e^{-x}\over 2}+{e^x+e^{-x}\over 2}\right)^D[x^n][y^i]\]
\(e^x\)\(e^{-x}\)分开
\[Ans=2^{-D}n!\sum\limits_{i=0}^{n-2m}\left(e^x(1+y)+e^{-x}(1-y)\right)^D[x^n][y^i]\]
二项式展开
\[Ans=2^{-D}n!\sum\limits_{i=0}^{n-2m}\sum\limits_{T=0}^{D}e^{(2T-D)x}(1+y)^T(1-y)^{D-T}{D\choose T}[x^n][y^i]\]
\(i\)放到后面去,就是
\[=2^{-D}\sum\limits_{T=0}^{D}(2T-D)^n{D\choose T}\sum\limits_{i=0}^{n-2m}\left((1+y)^T(1-y)^{D-T}\right)[y^i]\]

(看来是我的推法太蠢了)

记后面的东西\(F(T,D)=\sum\limits_{i=0}^{n-2m}\left((1+y)^T(1-y)^{D-T}\right)[y^i]\)
接下来就是高端操作时间
把一个\((1+y)\)拆成\(-(1-y)+2\),式子就可以化开成两边,具体略去
立刻可以得到\(F(T,D)=-F(T-1,D)+2F(T-1,D-1)\)

然后\(F(0,D)=\sum\limits_{i=0}^{n-2m}{D\choose i}(-1)^i\)
通过杨辉三角的性质,化到上一行去发现都消掉了,结果就是\({D-1\choose n-2m}(-1)^{n-2m}\)

然后就可以通过NTT加速递推过程求出\(F(T,D)\)了。

实际上网上似乎有一种很简单的推法,利用容斥,变成至少i个为奇数,然后式子就好化很多,结果就是两次直接的卷积,就不需要后面的高端操作了。
时间复杂度\(O(n\log n)\)

Code

#include <bits/stdc++.h>
#define fo(i,a,b) for(int i=a;i<=b;++i)
#define fod(i,a,b) for(int i=a;i>=b;--i)
#define N 100005
#define M 262144
#define T 18
#define mo 998244353
#define LL long long
using namespace std;
LL l,n,m,js[M+1],ns[M+1],ny[M+1];
LL ksm(LL k,LL n)
{
    k=(k+mo)%mo;
    LL s=1;
    for(;n;n>>=1,k=k*k%mo) if(n&1) s=s*k%mo;
    return s;
}
LL C(int n,int m)
{
    if(n<m||n<0||m<0) return 0;
    return js[n]*ns[m]%mo*ns[n-m]%mo;
}
int a[M+1],b[M+1];
LL F(int w)
{
    if(w==0) return 1;
    return ((n-2*m)&1)?(mo-C(w-1,n-2*m))%mo:C(w-1,n-2*m);
}

int bit[M+1];
int wi[M+1];
namespace polynomial
{
    void prp()
    {
        LL v=ksm(3,(mo-1)/M);
        wi[0]=1;
        fo(i,1,M) 
        {
            wi[i]=(LL)wi[i-1]*v%mo;
            bit[i]=(bit[i>>1]>>1)|((i&1)<<(T-1));
        }
    }
    int inc(int a,int b)
    {
        return (a+=b)>=mo?a-mo:a;
    }
    int dec(int a,int b)
    {
        return (a-=b)<0?a+mo:a;
    }
    void DFT(int *a)
    {
        fo(i,0,M-1) if(bit[i]<i) swap(a[i],a[bit[i]]);
        for(int h=1,l=(M>>1),v;h<M;h<<=1,l>>=1) 
        {
            for(int j=0;j<M;j+=h<<1) 
            {
                int *x=a+j,*y=x+h,*w=wi;
                for(int i=0;i<h;++i,++x,++y,w+=l)
                {
                    v=((LL)*y * *w)%mo;
                    *y=dec(*x,v);
                    *x=inc(*x,v);
                }
            }
        }
    }
    void IDFT(int *a)
    {
        DFT(a);
        fo(i,0,M-1) a[i]=a[i]*ny[M]%mo;
        reverse(a+1,a+M);
    }
}
using polynomial::prp;
using polynomial::DFT;
using polynomial::IDFT;
int main()
{
    cin>>l>>n>>m;
    if(n-2*m>=l) 
    {
        printf("%lld\n",ksm(l,n));
        return 0;
    } 
    js[0]=js[1]=ny[1]=ns[0]=ns[1]=1;
    fo(i,2,M) 
    {
        js[i]=js[i-1]*(LL)i%mo;
        ny[i]=(-ny[mo%i]*(LL)(mo/i)%mo+mo)%mo;
        ns[i]=ns[i-1]*ny[i]%mo; 
    }
    LL v=1;
    fo(i,0,l) 
    {
        a[i]=v*ns[i]%mo*F(l-i)%mo,b[i]=(LL)((i&1)?mo-1:1)*ns[i]%mo;
        v=v*(LL)2%mo; 
    }
    prp();
    DFT(a),DFT(b);
    fo(i,0,M-1) a[i]=(LL)a[i]*(LL)b[i]%mo;
    IDFT(a);
    LL ans=0;
    fo(i,0,l) ans=(ans+a[i]*js[i]%mo*ksm(2*i-l,n)%mo*C(l,i))%mo;
    printf("%lld\n",ans*ksm(ksm(2,l),mo-2)%mo);
}

转载于:https://www.cnblogs.com/BAJimH/p/10902115.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值