生成函数Euler变换学习笔记(无标号有根树计数)

众所周知,对于有标号计数的指数型生成函数 f ( x ) f(x) f(x),将其任意地进行无顺序的组合,得到的生成函数是 e x p ( f ( x ) ) exp(f(x)) exp(f(x))

而对于无标号计数的这样的组合,我们就需要引入一个叫 Eular \text{Eular} Eular 变换的东西 E ( f ( x ) ) \mathcal{E}(f(x)) E(f(x))

(这个符号打法:\mathcal(E)

为了方便,本文中记 f i f_i fi表示 [ x i ] f ( x ) [x^i]f(x) [xi]f(x)。两种表述可能混用。

我们先引入一个实际问题: n n n个点无标号有根树的计数。两棵树被认为相同,当且仅当存在一种重标号方案,使得它们的根标号相同且边集相等。

对于一棵树,我们去掉它的根,然后就分成若干棵独立的子树。所以对无标号有根树的 OGF \text{OGF} OGF F ( x ) F(x) F(x),有

F ( x ) = x ⋅ E ( F ( x ) ) F(x)=x\cdot\mathcal E(F(x)) F(x)=xE(F(x))

先思考这个问题的主要矛盾在什么地方:对于分出来的若干子树,如果有一些子树完全一致,那么它们只会贡献一次方案。但如果只是大小相同而本质不同,仍然算作不同的方案。

换句话说,最终的方案只和每种本质不同的子树使用的个数有关。考虑背包。

每种本质不同的大小为 k k k的树构造完全背包的生成函数,即

1 1 − x k \frac{1}{1-x^k} 1xk1

那么我们可以得到一个简单粗暴的定义式:

E ( F ( x ) ) = ∏ i = 1 ∞ 1 ( 1 − x i ) F i \mathcal E(F(x))=\prod_{i=1}^{\infin}\frac 1{(1-x^i)^{F_i}} E(F(x))=i=1(1xi)Fi1

F i F_i Fi是因为有 F i F_i Fi种本质不同大小为 i i i的物品

然后开始愉快地推式子

G ( x ) = E ( F ( x ) ) = ∏ i = 1 ∞ 1 ( 1 − x i ) F i G(x)=\mathcal E(F(x))=\prod_{i=1}^{\infin}\frac 1{(1-x^i)^{F_i}} G(x)=E(F(x))=i=1(1xi)Fi1

既然有连乘,先求个 ln ⁡ \ln ln

ln ⁡ ( G ( x ) ) = − ∑ i = 1 ∞ F i ln ⁡ ( 1 − x i ) \ln (G(x))=-\sum_{i=1}^{\infin}F_i\ln(1-x^i) ln(G(x))=i=1Filn(1xi)

ln ⁡ \ln ln还是看不顺眼,求个导

G ′ ( x ) G ( x ) = ∑ i = 1 ∞ F i i x i − 1 1 − x i \frac{G'(x)}{G(x)}=\sum_{i=1}^{\infin}F_i\frac{ix^{i-1}}{1-x^i} G(x)G(x)=i=1Fi1xiixi1

又看见了喜闻乐见的完全背包,直接展开

G ′ ( x ) G ( x ) = ∑ i = 1 ∞ F i ⋅ i x i − 1 ∑ j = 0 ∞ x i j \frac{G'(x)}{G(x)}=\sum_{i=1}^{\infin}F_i\cdot ix^{i-1}\sum_{j=0}^{\infin}x^{ij} G(x)G(x)=i=1Fiixi1j=0xij

G ′ ( x ) G ( x ) = ∑ i = 1 ∞ F i ⋅ i ∑ j = 0 ∞ x i ( j + 1 ) − 1 \frac{G'(x)}{G(x)}=\sum_{i=1}^{\infin}F_i\cdot i\sum_{j=0}^{\infin}x^{i(j+1)-1} G(x)G(x)=i=1Fiij=0xi(j+1)1

G ′ ( x ) G ( x ) = ∑ i = 1 ∞ F i ⋅ i ∑ j = 1 ∞ x i j − 1 \frac{G'(x)}{G(x)}=\sum_{i=1}^{\infin}F_i\cdot i\sum_{j=1}^{\infin}x^{ij-1} G(x)G(x)=i=1Fiij=1xij1

再积分回来

ln ⁡ ( G ( x ) ) = ∑ i = 1 ∞ F i ⋅ i ∑ j = 1 ∞ x i j i j \ln(G(x))=\sum_{i=1}^{\infin}F_i\cdot i\sum_{j=1}^{\infin}\frac{x^{ij}}{ij} ln(G(x))=i=1Fiij=1ijxij

整理一下

ln ⁡ ( G ( x ) ) = ∑ i = 1 ∞ F i ∑ j = 1 ∞ x i j j \ln(G(x))=\sum_{i=1}^{\infin}F_i\sum_{j=1}^{\infin}\frac{x^{ij}}j ln(G(x))=i=1Fij=1jxij

ln ⁡ ( G ( x ) ) = ∑ j = 1 ∞ 1 j ∑ i = 1 ∞ F i x i j \ln(G(x))=\sum_{j=1}^{\infin}\frac 1j\sum_{i=1}^{\infin}F_ix^{ij} ln(G(x))=j=1j1i=1Fixij

ln ⁡ ( G ( x ) ) = ∑ j = 1 ∞ F ( x j ) j \ln(G(x))=\sum_{j=1}^{\infin}\frac{F(x^j)}j ln(G(x))=j=1jF(xj)

ln ⁡ ( G ( x ) ) = ∑ i = 1 ∞ F ( x i ) i \ln(G(x))=\sum_{i=1}^{\infin}\frac{F(x^i)}i ln(G(x))=i=1iF(xi)

得到 Eular \text{Eular} Eular 变换的计算式(雾)

E ( F ( x ) ) = exp ⁡ ( ∑ i = 1 ∞ F ( x i ) i ) \mathcal E(F(x))=\exp(\sum_{i=1}^{\infin}\frac{F(x^i)}{i}) E(F(x))=exp(i=1iF(xi))

然后回到原问题

F ( x ) = x ⋅ E ( F ( x ) ) F(x)=x\cdot\mathcal E(F(x)) F(x)=xE(F(x))

F ( x ) = x ⋅ exp ⁡ ( ∑ i = 1 ∞ F ( x i ) i ) F(x)=x\cdot \exp(\sum_{i=1}^{\infin}\frac{F(x^i)}{i}) F(x)=xexp(i=1iF(xi))

两边求导(如果高数不好建议自己多写几步)

F ′ ( x ) = exp ⁡ ( ∑ i = 1 ∞ F ( x i ) i ) + x ⋅ exp ⁡ ( ∑ i = 1 ∞ F ( x i ) i ) ⋅ ∑ i = 1 ∞ i x i − 1 ⋅ F ′ ( x i ) i F'(x)=\exp(\sum_{i=1}^{\infin}\frac{F(x^i)}{i})+x\cdot \exp(\sum_{i=1}^{\infin}\frac{F(x^i)}{i})\cdot\sum_{i=1}^{\infin}\frac{ix^{i-1}\cdot F'(x^i)}i F(x)=exp(i=1iF(xi))+xexp(i=1iF(xi))i=1iixi1F(xi)

F ′ ( x ) = exp ⁡ ( ∑ i = 1 ∞ F ( x i ) i ) + F ( x ) ∑ i = 1 ∞ x i − 1 ⋅ F ′ ( x i ) F'(x)=\exp(\sum_{i=1}^{\infin}\frac{F(x^i)}{i})+F(x)\sum_{i=1}^{\infin}x^{i-1}\cdot F'(x^i) F(x)=exp(i=1iF(xi))+F(x)i=1xi1F(xi)

两边同时乘上 x x x

x ⋅ F ′ ( x ) = F ( x ) + F ( x ) ∑ i = 1 ∞ x i ⋅ F ′ ( x i ) x\cdot F'(x)=F(x)+F(x)\sum_{i=1}^{\infin}x^i\cdot F'(x^i) xF(x)=F(x)+F(x)i=1xiF(xi)

#undef G

G ( x ) = ∑ i = 1 ∞ x i ⋅ F ′ ( x i ) G(x)=\sum_{i=1}^{\infin}x^i\cdot F'(x^i) G(x)=i=1xiF(xi)

x ⋅ F ′ ( x ) = F ( x ) + F ( x ) G ( x ) x\cdot F'(x)=F(x)+F(x)G(x) xF(x)=F(x)+F(x)G(x)

考虑求这东西的第 x n x^n xn

n F n = F n + ∑ k = 1 n − 1 F k G n − k nF_n=F_n+\sum_{k=1}^{n-1}F_kG_{n-k} nFn=Fn+k=1n1FkGnk

F n = 1 n − 1 ∑ k = 1 n − 1 F k G n − k F_{n}=\frac 1{n-1}\sum_{k=1}^{n-1}F_kG_{n-k} Fn=n11k=1n1FkGnk

如果我们知道 G G G,就可以直接分治 NTT 算出 F F F

现在考虑这个 G G G

G ( x ) = ∑ i = 1 ∞ x i ⋅ F ′ ( x i ) G(x)=\sum_{i=1}^{\infin}x^i\cdot F'(x^i) G(x)=i=1xiF(xi)

G n = ∑ i = 1 ∞ [ x n − i ] F ′ ( x i ) G_n=\sum_{i=1}^{\infin}[x^{n-i}]F'(x^i) Gn=i=1[xni]F(xi)

经过大胆的观察和仔细的猜想

G n = ∑ d ∣ n ( n − d d + 1 ) F n − d d + 1 G_n=\sum_{d\mid n}(\frac {n-d}d+1)F_{\frac {n-d}d+1} Gn=dn(dnd+1)Fdnd+1

G n = ∑ d ∣ n ( n d ) F n d G_n=\sum_{d\mid n}(\frac nd)F_{\frac nd} Gn=dn(dn)Fdn

G n = ∑ d ∣ n d F d G_n=\sum_{d\mid n}d F_d Gn=dndFd

然后每求出一个 F F F,就可以调和级数复杂度求出之前的 G G G,就可以分治 NTT 了。

但是分治时如果 L = 1 L=1 L=1 G G G可能不够用。解决办法是先不计算不够的地方的贡献,在后面再把它加上。

具体的讲,如果我们要计算 F 1 ∼ m i d F_{1\sim mid} F1mid F m i d + 1 ∼ R F_{mid+1\sim R} Fmid+1R的贡献,我们只计算 i i i不超过 m i d mid mid G i G_i Gi的贡献,这样少算了 G m i d + 1 , R − 1 G_{mid+1,R-1} Gmid+1,R1的贡献。而这部分贡献可以通过 R R R之前交换 F F F G G G做一次类似的卷积计算出来。详见代码。

复杂度 O ( n log ⁡ 2 n ) O(n\log ^2n) O(nlog2n)

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cctype>
#define MAXN 524288
using namespace std;
const int MOD=998244353;
typedef long long ll;
inline int add(const int& x,const int& y){return x+y>=MOD? x+y-MOD:x+y;}
inline int dec(const int& x,const int& y){return x<y? x-y+MOD:x-y;}
inline int qpow(int a,int p)
{
	int ans=1;
	while (p)
	{
		if (p&1) ans=(ll)ans*a%MOD;
		a=(ll)a*a%MOD;p>>=1;
	}
	return ans;
}
#define inv(x) qpow(x,MOD-2)
int rt[2][24],r[MAXN],l,lim;
inline void init(){lim=1<<l;for (int i=0;i<lim;i++) r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));}
inline void NTT(int* a,int type)
{
	for (int i=0;i<lim;i++) if (i<r[i]) swap(a[i],a[r[i]]);
	for (int L=0;L<l;L++)
	{
		int mid=1<<L,len=mid<<1;
		ll Wn=rt[type][L+1];
		for (int s=0;s<lim;s+=len)
			for (int k=0,w=1;k<mid;k++,w=w*Wn%MOD)
			{
				int x=a[s+k],y=(ll)w*a[s+mid+k]%MOD;
				a[s+k]=add(x,y),a[s+mid+k]=dec(x,y);
			}
	}
	if (type)
	{
		int t=inv(lim);
		for (int i=0;i<lim;i++) a[i]=(ll)a[i]*t%MOD;
	}
}
int f[MAXN],g[MAXN],n;
int a[MAXN],b[MAXN];
void solve(int L,int R)
{
	if (L==R)
	{
		if (L>1) f[L]=(ll)f[L]*inv(L-1)%MOD;
		int t=(ll)L*f[L]%MOD;
		for (int i=L;i<=n;i+=L) g[i]=add(g[i],t);
		return;
	}
	int mid=(L+R)>>1;
	solve(L,mid);
	int len=R-L;
	for (l=0;(1<<l)<=(len<<1);l++);
	init();
	if (L==1)
	{
		for (int i=0;i<lim;i++) a[i]=b[i]=0;
		for (int i=L;i<=mid;i++) a[i]=f[i],b[i]=g[i];
		NTT(a,0);NTT(b,0);
		for (int i=0;i<lim;i++) a[i]=(ll)a[i]*b[i]%MOD;
		NTT(a,1);
		for (int i=mid+1;i<=R;i++) f[i]=add(f[i],a[i]);
	}
	else
	{
		for (int i=0;i<lim;i++) a[i]=b[i]=0;
		for (int i=L;i<=mid;i++) a[i-L]=f[i];
		for (int i=0;i<=len;i++) b[i]=g[i];
		NTT(a,0);NTT(b,0);
		for (int i=0;i<lim;i++) a[i]=(ll)a[i]*b[i]%MOD;
		NTT(a,1);
		for (int i=mid+1;i<=R;i++) f[i]=add(f[i],a[i-L]);
		for (int i=0;i<lim;i++) a[i]=b[i]=0;
		for (int i=L;i<=mid;i++) a[i-L]=g[i];
		for (int i=0;i<=len;i++) b[i]=f[i];
		NTT(a,0);NTT(b,0);
		for (int i=0;i<lim;i++) a[i]=(ll)a[i]*b[i]%MOD;
		NTT(a,1);
		for (int i=mid+1;i<=R;i++) f[i]=add(f[i],a[i-L]);
	}
	
	solve(mid+1,R);
}
int main()
{
	rt[0][23]=qpow(3,119),rt[1][23]=inv(rt[0][23]);
	for (int i=22;i>=0;i--)
	{
		rt[0][i]=(ll)rt[0][i+1]*rt[0][i+1]%MOD;
		rt[1][i]=(ll)rt[1][i+1]*rt[1][i+1]%MOD;
	}
	scanf("%d",&n);
	f[1]=1;
	solve(1,n);
	int ans=f[n];
	printf("%d\n",ans);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值