整数划分问题
总提交:235 測试通过:158
描写叙述
将一个正整数n表示成一系列正整数之和,n=n1+ n2+…+ nk(当中,n1≥n2≥…≥nk≥1,k≥1).正整数n的这样的表示称为正整数n的划分。正整数n的不同的划分个数称为正整数n的划分数,记作P(n)。
比如,正整数6有例如以下11种不同的划分,所以P(6)=11.
6;
5+1;
4+2,4+1+1;
3+3,3+2+1,3+1+1+1;
2+2+2,2+2+1+1,2+1+1+1+1;
1+1+1+1+1+1.
输入
測试文件有多个測试数据,每一个測试数据为一个正整数n(1≤n≤100),占一行。
输出
对每一个測试数据计算其划分数P(n),每一个结果占一行。
例子输入
2
例子输出
2
递归法解释比較麻烦,贴百度的
在正整数 n 全部不同的划分中,将最大加数 n1 不大于 m 的划分个数记作 q(n,m) ,称它为属于 n 的一个 m 划分。依据 n 和 m 的关系,考虑下面几种情况:
( 1 )当 n=1 时,不论 m 的值为多少( m>0) ,仅仅有一种划分即 {1};
(2) 当 m=1 时,不论 n 的值为多少,仅仅有一种划分即 n 个 1 , {1,1,1,...,1};
(3) 当 n=m 时,依据划分中是否包括 n ,能够分为两种情况:
(a). 划分中包括 n 的情况,仅仅有一个即 {n} ;
(b). 划分中不包括 n 的情况,这时划分中最大的数字也一定比 n 小,即 n 的全部 (n-1) 划分。
因此 q(n,n) =1 + q(n,n-1);
(4) 当 n<m 时,因为划分中不可能出现负数,因此就相当于 q(n,n);
(5) 但 n>m 时,依据划分中是否包括最大值 m ,能够分为两种情况:
(a). 划分中包括 m 的情况,即 {m, {x1,x2,...xi}}, 当中 {x1,x2,... xi} 的和为 n-m ,可能再次出现 m ,因此是( n-m )的 m 划分,因此这样的划分个数为 q(n-m, m);
(b). 划分中不包括 m 的情况,则划分中全部值都比 m 小,即 n 的 (m-1) 划分,个数为 q(n,m-1);
因此 q(n, m) = q(n-m, m)+q(n,m-1);
综合以上情况,我们能够看出,上面的结论具有递归定义特征,当中( 1 )和( 2 )属于边界条件,( 3 )和( 4 )属于特殊情况,将会转换为情况( 5 )。而情况 ( 5 )为通用情况,属于递推的方法,其本质主要是通过减小 m 以达到边界条件,从而解决这个问题。其递推表达式例如以下:
0 n<1 或 m<1
1 n=1 或 m=1
q(n,m) = q(n,n) n<m
1+q(n,n-1) n=m
q(n,m-1)+q(n-m,m) n>m>1
据此,可设计计算 q(n,m) 的递归算法例如以下。当中,正整数 n 的划分数 P(n)=q(n,n) 。
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <queue>
#define M 1000005
#define ll long long
using namespace std;
int dfs(int a,int b)
{
if(a==1||b==1)
return 1;
if(b>a)
return dfs(a,a);
if(b==a)
return dfs(a,b-1)+1;
if(a>b)
return dfs(a-b,b)+dfs(a,b-1);
}
int main()
{
int i,n;
while(~scanf("%d",&n))
{
printf("%d\n",dfs(n,n));
}
return 0;
}
耗时较长,将递归转化为二维数组写法的递推
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <queue>
#define M 1000005
#define ll long long
using namespace std;
int main()
{
int a[105][105];
int i,j,n;
for(i=1;i<=100;i++)
{
a[i][1]=1;
a[1][i]=1;
}
for(i=2;i<=100;i++)
{
for(j=2;j<=100;j++)
{
if(i==j)
a[i][j]=1+a[i][j-1];
if(i<j)
a[i][j]=a[i][i];
if(i>j)
a[i][j]=a[i-j][j]+a[i][j-1];
}
}
while(~scanf("%d",&n))
{
printf("%d\n",a[n][n]);
}
return 0;
}