高等代数问题1

问题:设$A$是一个实数域上$n \times n$的方阵,证明:
\[ \sum_{j=1}^n \frac{|a_{jj}|}{|a_{1j}|+ |a_{2j}| + \cdots + |a_{nj}|} \le \mathrm{r} (A) \]

其中,当某项的分母为$0$时,认为此项也为0.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


 

 

证明:

由于我们可以将矩阵的每一列均乘以一个非零数,使得矩阵的秩不变.因此,我们可以使得$|a_{1j}|+ |a_{2j}| + \cdots + |a_{nj}| = 1$或$0$,并且$a_{jj} \ge 0$.
从而此时
\[ \sum_{j=1}^n \frac{|a_{jj}|}{|a_{1j}|+ |a_{2j}| + \cdots + |a_{nj}|} = \sum_{j=1}^n a_{jj} = \mathrm{tr}(A) \]
而我们证明:如果一个矩阵每列数的绝对值之和均不超过1,则该矩阵每个特征值的模长均不超过1.事实上,设$\lambda$为$A$的一个特征值,从而
$Ax = \lambda x \Rightarrow |\lambda x_i| = \displaystyle \left| \sum_{j=1}^n a_{ij}x_j \right| \le \sum_{j=1}^n |a_{ij}||x_j|,i = 1,\cdots,n$
从而
\[ |\lambda| \sum_{i=1}^n |x_i| \le \sum_{i=1}^n \left( \sum_{j=1}^n |a_{ij}||x_j| \right) = \sum_{j=1}^n \left( \sum_{i=1}^n |a_{ij}||x_j| \right) \le \sum_{j=1}^n |x_j|\]
从而$|\lambda| \le 1$

于是$\mathrm{tr}(A) = \sum \lambda_i \le \sum |\lambda_i| \le \mathrm{r}(A)$
其中,最后一步是因为不为$0$的特征值的个数等于矩阵的秩,而每个不为$0$的特征值的模长均小于1.

转载于:https://www.cnblogs.com/focuslucas/p/6530480.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值