主成分分析(Principal Component Analysis,PCA),最早是由K·皮尔森(Karl Pearson)对非随机变量引入的一种统计方法,尔后H.霍特林将此方法推广到随机向量的情形。主成分是指通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量就叫主成分[百度百科]。
主成分分析方法的使用是相当普遍的,如问卷的效度分析,因子分析的降维处理等等。那么,主成分分析方法又是如何确定指标权重的呢?
对于SPSS软件的主成分分析操作在这里不再赘述,选取需要用到的总方差解释表和成分矩阵表。
第一步:确定主成分在各线性组合中的系数。系数=载荷数/对应特征根的开方,例如问题4的系数=0.933/(4.680)1/2≈0.431。
表1 各线性组合中的系数