spss主成分综合得分_权重赋值之“主成分分析法”

本文介绍了SPSS中主成分分析法用于确定指标权重的步骤,包括计算各线性组合的系数、综合得分模型的系数及权重。通过归一化处理,得出各因素的权重,简化复杂数据的分析过程。
摘要由CSDN通过智能技术生成

主成分分析(Principal Component Analysis,PCA),最早是由K·皮尔森(Karl Pearson)对非随机变量引入的一种统计方法,尔后H.霍特林将此方法推广到随机向量的情形。主成分是指通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量就叫主成分[百度百科]。

主成分分析方法的使用是相当普遍的,如问卷的效度分析,因子分析的降维处理等等。那么,主成分分析方法又是如何确定指标权重的呢?

对于SPSS软件的主成分分析操作在这里不再赘述,选取需要用到的总方差解释表和成分矩阵表。

7bec8af52d8c3813107756ce5f6399f5.png

b400b88b9a0207804a8ec8637670522c.png

第一步:确定主成分在各线性组合中的系数。系数=载荷数/对应特征根的开方,例如问题4的系数=0.933/(4.680)1/2≈0.431。

表1 各线性组合中的系数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值