综合分析实验结果,可以得出如下结论:
(1)一般的光照条件,对识别影响较小,无须在识别前先进行特殊的光照处理。
(2)偏光严重的人脸图像,一般水平方向偏光对识别的影响比垂直方向偏光更大。在没有其他任何噪声情况下(如眼镜、胡子或其他遮挡物),需要作光照处理的光照方向范围为:左右偏光大于
60°;左右偏光小于 60°,垂直方向大于40°的上偏光;左右偏光小于 60°,垂直方向大于90°的下偏光。
2.2光照方向偏转程度的判定
经过大量的实验发现,根据2.1节中给出的需要进行光照补偿的参数,当偏光角度达到需要补偿光照偏转条件时,人脸上的灰度分布呈现一定规律,如图2所示。基于此,提出一种判定需要进行光照补偿的光照方向的算法。
令人脸图像像素灰度值为pij,整个图像的灰度平均值为E,正常人脸灰度平均值为E0,人脸上亮暗部分灰度差阈值为T1。
(1)比较待识别人脸图像的灰度平均值与正常光照下人脸图像的灰度平均值E0,这是判定需要补偿人脸的必要条件。
(2)判断垂直方向上由于偏转的光照方向使人脸上灰度值急剧下降的区域是否超过整个人脸的1/3,以此判定水平方向光照偏转达到补偿条件的人脸。本文原文
(3)统计人脸图像上小于该人脸灰度平均值的像素数目,判断水平方向偏转角较小,而垂直方向偏转角度大的需补偿的人脸,同时排除光照偏转角度不满足光照补偿条件的肤色较暗的人脸。
该算法的伪码如下:
在实际人脸识别系统中进行光照补偿的人脸数目一般较少,故对所有人脸作光照补偿与否的判定算法必须简单、快速,所需时间要远小于光照补偿耗时。这里提出的光照偏转程度判断算法也正是基于此目的。由于该算法的全部计算在对人脸两次扫描中完成,涉及的计算步骤只有加法运算和单一的判断,计算简单、计算量小,基本不影响识别速度。同时为了保证识别率,算法判断时最大覆盖所有可能需要补偿的人脸。
3实验结果
基于第二章中给出的光照补偿条件参数和判断需补偿光照方向的方法,重新用2DPCA和Fisher两种识别方法分别对实验1测试集中的2
113张人脸进行识别。选用简单的直方图均衡作光照补偿,虽然该方法对光照补偿效果不是很好,但运算简单、计算量小、速度快。
实验3对测试集中部分人脸在识别前作光照补偿,即对光照变化小于60°的人脸直接进行识别,而对大于60°的人脸则在识别前根据第2章提出的方法,有选择地先进行直方图均衡光照补偿,共补偿人脸302幅,然后再进行识别。
由表3可以看出,尽管实验中需要补偿的人脸只占所有待识别人脸的14.287%,但实验3和4相比识别率没有明显变化,识别速度减慢四倍以上;另一方面,实验4和5相比识别率有较大改进,识别时间只增加一倍。
显然,对所有人脸均进行光照补偿的实验3的识别率没有提高很多,而识别速度下降很多的原因在于:在实际的人脸识别中,大部分需识别的人脸受光照影响较小,不需要光照补偿,而不加区别地对所有人脸都作光照补偿,必定增加不必要的识别时间、识别运算量和运算步骤,甚至还可能对无需光照补偿的人脸造成噪声污染,影响识别效果。实验5中所有图像均未作光照补偿,虽然识别所用时间最少,但识别率较实验4和实验3相差较多。而根据人脸受光照影响情况,有选择地进行光照补偿的实验4,由于只对偏光现象严重的待识别人脸进行补偿,在增加少量的识别时间的同时有效地提高了识别率。
另外,实验中选用的是简单的、效果一般的光照补偿方法,若用其他更复杂的补偿算法,势必增加更多不必要的识别时间,大大降低识别速度。因此,在对人脸光照偏转程度判断的基础上,在识别前有选择地进行人脸图像的光照补偿,对于实际的人脸识别系统是有意义的。
4结束语
本文提出的对识别有影响的光照方向参数和判定影响识别的光照方向方法,可以避免对所有人脸统一作光照补偿,这样在减少运算步骤的同时还降低了系统复杂度,避免了不必要的计算。同时有选择地对达到光照补偿条件的人脸进行补偿又可以较大提高识别率,改进识别效果。对于确实需要光照处理的人脸的光照补偿研究,可建立光源照射模型或人脸3D模型仿真真实光照情景;分析由于光照造成的人脸不同位置在同一光源下灰度变化不同,研究光源的相对移动,并近似用灰度变化特性表示或通过寻求更好地体现光照特性的光照敏感特征等方法进一步研究。