matlab光照补偿命令,光照补偿判别以及方法(转载)

该文探讨了光照条件对人脸识别的影响,提出了一种判断光照补偿条件的算法。实验表明,有针对性的光照补偿能提高识别率,而无差别补偿会降低识别速度。光照偏转程度的判断算法简单快速,减少了不必要的计算,对于实际人脸识别系统具有重要意义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

综合分析实验结果,可以得出如下结论:

(1)一般的光照条件,对识别影响较小,无须在识别前先进行特殊的光照处理。

(2)偏光严重的人脸图像,一般水平方向偏光对识别的影响比垂直方向偏光更大。在没有其他任何噪声情况下(如眼镜、胡子或其他遮挡物),需要作光照处理的光照方向范围为:左右偏光大于

60°;左右偏光小于 60°,垂直方向大于40°的上偏光;左右偏光小于 60°,垂直方向大于90°的下偏光。

2.2光照方向偏转程度的判定

经过大量的实验发现,根据2.1节中给出的需要进行光照补偿的参数,当偏光角度达到需要补偿光照偏转条件时,人脸上的灰度分布呈现一定规律,如图2所示。基于此,提出一种判定需要进行光照补偿的光照方向的算法。

令人脸图像像素灰度值为pij,整个图像的灰度平均值为E,正常人脸灰度平均值为E0,人脸上亮暗部分灰度差阈值为T1。

(1)比较待识别人脸图像的灰度平均值与正常光照下人脸图像的灰度平均值E0,这是判定需要补偿人脸的必要条件。

(2)判断垂直方向上由于偏转的光照方向使人脸上灰度值急剧下降的区域是否超过整个人脸的1/3,以此判定水平方向光照偏转达到补偿条件的人脸。本文原文

(3)统计人脸图像上小于该人脸灰度平均值的像素数目,判断水平方向偏转角较小,而垂直方向偏转角度大的需补偿的人脸,同时排除光照偏转角度不满足光照补偿条件的肤色较暗的人脸。

该算法的伪码如下:

在实际人脸识别系统中进行光照补偿的人脸数目一般较少,故对所有人脸作光照补偿与否的判定算法必须简单、快速,所需时间要远小于光照补偿耗时。这里提出的光照偏转程度判断算法也正是基于此目的。由于该算法的全部计算在对人脸两次扫描中完成,涉及的计算步骤只有加法运算和单一的判断,计算简单、计算量小,基本不影响识别速度。同时为了保证识别率,算法判断时最大覆盖所有可能需要补偿的人脸。

3实验结果

基于第二章中给出的光照补偿条件参数和判断需补偿光照方向的方法,重新用2DPCA和Fisher两种识别方法分别对实验1测试集中的2

113张人脸进行识别。选用简单的直方图均衡作光照补偿,虽然该方法对光照补偿效果不是很好,但运算简单、计算量小、速度快。

实验3对测试集中部分人脸在识别前作光照补偿,即对光照变化小于60°的人脸直接进行识别,而对大于60°的人脸则在识别前根据第2章提出的方法,有选择地先进行直方图均衡光照补偿,共补偿人脸302幅,然后再进行识别。

由表3可以看出,尽管实验中需要补偿的人脸只占所有待识别人脸的14.287%,但实验3和4相比识别率没有明显变化,识别速度减慢四倍以上;另一方面,实验4和5相比识别率有较大改进,识别时间只增加一倍。

显然,对所有人脸均进行光照补偿的实验3的识别率没有提高很多,而识别速度下降很多的原因在于:在实际的人脸识别中,大部分需识别的人脸受光照影响较小,不需要光照补偿,而不加区别地对所有人脸都作光照补偿,必定增加不必要的识别时间、识别运算量和运算步骤,甚至还可能对无需光照补偿的人脸造成噪声污染,影响识别效果。实验5中所有图像均未作光照补偿,虽然识别所用时间最少,但识别率较实验4和实验3相差较多。而根据人脸受光照影响情况,有选择地进行光照补偿的实验4,由于只对偏光现象严重的待识别人脸进行补偿,在增加少量的识别时间的同时有效地提高了识别率。

另外,实验中选用的是简单的、效果一般的光照补偿方法,若用其他更复杂的补偿算法,势必增加更多不必要的识别时间,大大降低识别速度。因此,在对人脸光照偏转程度判断的基础上,在识别前有选择地进行人脸图像的光照补偿,对于实际的人脸识别系统是有意义的。

4结束语

本文提出的对识别有影响的光照方向参数和判定影响识别的光照方向方法,可以避免对所有人脸统一作光照补偿,这样在减少运算步骤的同时还降低了系统复杂度,避免了不必要的计算。同时有选择地对达到光照补偿条件的人脸进行补偿又可以较大提高识别率,改进识别效果。对于确实需要光照处理的人脸的光照补偿研究,可建立光源照射模型或人脸3D模型仿真真实光照情景;分析由于光照造成的人脸不同位置在同一光源下灰度变化不同,研究光源的相对移动,并近似用灰度变化特性表示或通过寻求更好地体现光照特性的光照敏感特征等方法进一步研究。

### MATLAB 实现低光照条件下车牌识别的方法和技术 #### 图像采集与预处理 为了应对夜间或低光照环境中的挑战,图像采集阶段至关重要。使用高清摄像头捕获车辆图像后,需对这些图像实施一系列预处理措施来改善其质量。具体来说,通过将彩色图像转换成灰度图像并应用直方图均衡化可以有效提升对比度,从而减轻因光线不足带来的影响[^1]。 ```matlab % 将RGB图像转为灰度图像 grayImage = rgb2gray(originalImage); % 应用直方图均衡化以增强对比度 enhancedImage = histeq(grayImage); imshow(enhancedImage); % 显示增强后的图像 ``` #### 车牌定位 接下来是对经过预处理的图像执行车牌定位的任务。这一步骤依赖于车牌本身的几何特征以及颜色特性来进行初步筛选,并借助边缘检测算法如Canny算子找到可能存在的矩形轮廓;随后运用形态学运算细化候选区域直至最终确定车牌的具体位置[^2]。 ```matlab edges = edge(enhancedImage, 'Canny'); [BW, threshold] = edge(enhancedImage,'log'); se90 = strel('line', 3, 90); se0 = strel('line', 3, 0); BWsmoothed = imclose(edges, se90); BWsmoothed = imclose(BWsmoothed, se0); plate_like_objects = ~imfill(~BWsmoothed, 'holes'); ``` #### 字符分割 一旦成功锁定了车牌的位置,则需要进一步分离各个字符以便后续分析。此过程通常涉及二值化处理去除背景杂讯,再依据垂直方向上的像素分布情况完成单个字符间的切割工作。 ```matlab binaryPlate = imbinarize(croppedPlateRegion); cleanBinaryPlate = bwareaopen(binaryPlate, 50); % 移除小面积对象 projectionProfile = sum(cleanBinaryPlate, 1); charPositions = find(diff([false projectionProfile false])~=0); chars = mat2cell(cleanBinaryPlate, height(cleanBinaryPlate), diff(charPositions)); ``` #### 字符识别 最后,在获取清晰可辨别的字符图片之后,可以选择合适的模式分类器——例如SVM(支持向量机)或是更先进的CNN(卷积神经网络)架构来进行自动化读取。对于后者而言,还需要准备足够的样本用于训练模型,确保其具备良好的泛化性能[^3]。 ```matlab % 假设已经有一个预先训练好的CNN模型cnnModel.mat load('cnnModel.mat') predictedLabels = classify(trainedNet, chars); disp(predictedLabels); ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值