曲线拟合(curve-fitting):工程实践中,用测量到的一些离散的数据
要求所得的拟合曲{(xi,yi),i?0,1,2,...m}求一个近似的函数?(x)来拟合这组数据,
线能最好的反映数据的基本趋势(即使?(x)最好地逼近f?x?,而不必满足插值原则。因此没必要取?(xi)=yi,只要使?i??(xi)?yi尽可能地小)。
原理:
给定数据点{(xi,yi),i?0,1,2,...m}。求近似曲线?(x)。并且使得近似曲线与f?x?的偏差最小。近似曲线在该点处的偏差?i??(xi)?yi,i=1,2,...,m。
常见的曲线拟合方法:
1.使偏差绝对值之和最小
2.使偏差绝对值最大的最小
3.使偏差平方和最小
最小二乘法:
按偏差平方和最小的原则选取拟合曲线,并且采取二项式方程为拟合曲线的方法,称为最小二乘法。
推导过程:
1. 设拟合多项式为:
?(x)?a0?a1x?...?akxk
2. 各点到这条曲线的距离之和,即偏差平方和如下:
3. 问题转化为求待定系数a0...ak对等式右边求ai偏导数,因而我们得到了:
.......
4、 把这些等式化简并表示成矩阵的形式,就可以得到下面的矩阵:
5. 将这个范德蒙得矩阵化简后可得到:
6. 也就是说X*A=Y,那么A = (X'*X)-1*X'*Y