matlab最小二乘法拟合原理,最小二乘法曲线拟合_原理及matlab实现

本文介绍了最小二乘法曲线拟合的原理和MATLAB实现。通过求偏差平方和最小的拟合曲线,利用polyfit()函数进行多项式拟合,并通过polyval()计算曲线值。此外,还探讨了lsqcurvefit()函数在非线性拟合中的应用。
摘要由CSDN通过智能技术生成

111.png

曲线拟合(curve-fitting):工程实践中,用测量到的一些离散的数据

要求所得的拟合曲{(xi,yi),i?0,1,2,...m}求一个近似的函数?(x)来拟合这组数据,

线能最好的反映数据的基本趋势(即使?(x)最好地逼近f?x?,而不必满足插值原则。因此没必要取?(xi)=yi,只要使?i??(xi)?yi尽可能地小)。

原理:

给定数据点{(xi,yi),i?0,1,2,...m}。求近似曲线?(x)。并且使得近似曲线与f?x?的偏差最小。近似曲线在该点处的偏差?i??(xi)?yi,i=1,2,...,m。

常见的曲线拟合方法:

1.使偏差绝对值之和最小

2.使偏差绝对值最大的最小

3.使偏差平方和最小

最小二乘法:

按偏差平方和最小的原则选取拟合曲线,并且采取二项式方程为拟合曲线的方法,称为最小二乘法。

推导过程:

1. 设拟合多项式为:

?(x)?a0?a1x?...?akxk

2. 各点到这条曲线的距离之和,即偏差平方和如下:

3. 问题转化为求待定系数a0...ak对等式右边求ai偏导数,因而我们得到了:

.......

4、 把这些等式化简并表示成矩阵的形式,就可以得到下面的矩阵:

5. 将这个范德蒙得矩阵化简后可得到:

6. 也就是说X*A=Y,那么A = (X'*X)-1*X'*Y

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值