python鸢尾花数据集_Python实现鸢尾花数据集分类问题——使用LogisticRegression分类器...

本文介绍了使用LogisticRegression分类器解决鸢尾花数据集的分类问题。通过逻辑回归模型的原理、代码实现和实验结果分析,展示了如何处理多分类任务,并对比了使用不同特征数量的误判情况,强调了特征选择对模型性能的影响。
摘要由CSDN通过智能技术生成

. 逻辑回归

逻辑回归(Logistic Regression)是用于处理因变量为分类变量的回归问题,常见的是二分类或二项分布问题,也可以处理多分类问题,它实际上是属于一种分类方法。

概率p与因变量往往是非线性的,为了解决该类问题,我们引入了logit变换,使得logit(p)与自变量之  间存在线性相关的关系,逻辑回归模型定义如下:

1 #Sigmoid曲线:

2 importmatplotlib.pyplot as plt3 importnumpy as np4

5 defSigmoid(x):6 return 1.0 / (1.0 + np.exp(-x))7

8 x= np.arange(-10, 10, 0.1)9 h = Sigmoid(x) #Sigmoid函数

10 plt.plot(x, h)11 plt.axvline(0.0, color='k') #坐标轴上加一条竖直的线(0位置)

12 plt.axhspan(0.0, 1.0, facecolor='1.0', alpha=1.0, ls='dotted')13 plt.axhline(y=0.5, ls='dotted', color='k') #在y=0.5的地方加上黑色虚线

14 plt.yticks([0.0, 0.5, 1.0]) #y轴标度

15 plt.ylim(-0.1, 1.1) #y轴范围

16 plt.show()

二、鸢尾花分类问题的思路分析

(1)选择使用LogisticRegression分类器,由于Iris数据集涉及到3个目标分类问题,而逻辑回归模型是二分类模型,用于二分类问题。因此,可以将其推广为多项逻辑回归模型(multi-nominal logistic regression model),用于多分类。

(2)根据多项逻辑回归模型,编写代码,输入数据集,训练得到相应参数并作出预测。

(3)对预测出的数据的分类结果和原始数据进行可视化展示。

三、多项逻辑回归模型的原理及推导过程

假设类别Y 的取值集合为 {1,2,...,K},那么多项逻辑回归模型是:

c5a4ba3d92e2b9f279b3e6029cbddb65.png

其似然函数为:

b647969da7128909e0bc7bf3b8f991b3.png

其中,

e43adee6198ddf3b0917606f2610edd1.png 为模型在输入样本

710c3c94fecf5c3a9183bce502eedbdd.png时,将其判为类别k 的概率;

5cf571a84431cfd2d34f108018caa80a.png起到指示函数的作用,当K 等于样本

aecdcfb7c0dc54970353a5edb8ab21e5.png的标签类别时为1,其余均为0。

对似然函数取对数,然后取负,得到

bd07cf4e62d8e84bb942c23a4dbfe84e.png(简记为:

1. 加载数据集 首先,我们需要加载鸢尾花数据集。我们可以使用sklearn库中的load_iris函数来加载数据集,然后将其拆分为训练集和测试集。 ```python from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split iris = load_iris() X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2, random_state=42) ``` 2. 定义模型 接下来,我们需要定义逻辑回归模型。在Mindspore中,我们可以使用nn.SoftmaxCrossEntropyWithLogits来定义模型。 ```python import mindspore.nn as nn class LogisticRegression(nn.Cell): def __init__(self): super(LogisticRegression, self).__init__() self.fc = nn.Dense(3, 1) def construct(self, x): x = self.fc(x) return x ``` 这个模型包含一个全连接层,输入是4维的特征向量,输出是1维的标签。 3. 定义损失函数和优化器 接下来,我们需要定义损失函数和优化器。在逻辑回归中,我们通常使用交叉熵损失函数。在Mindspore中,我们可以使用nn.SoftmaxCrossEntropyWithLogits来定义损失函数。对于优化器,我们可以使用AdamOptimizer。 ```python import mindspore.ops.operations as P from mindspore.nn.optim import Adam criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean') optimizer = Adam(params=model.trainable_params(), learning_rate=0.01) ``` 4. 训练模型 现在,我们可以开始训练模型了。我们将使用Mindspore中的Model类来训练模型。在训练过程中,我们需要定义训练数据集、损失函数和优化器。 ```python import mindspore.dataset as ds from mindspore.train.callback import LossMonitor train_ds = ds.NumpySlicesDataset((X_train, y_train)) model = LogisticRegression() model_loss = nn.WithLossCell(model, criterion) model_loss_train = nn.TrainOneStepCell(model_loss, optimizer) model_train = nn.Model(model_loss_train) model_train.train(epochs=100, train_dataset=train_ds, callbacks=[LossMonitor()]) ``` 在训练过程中,我们还可以使用Mindspore中的LossMonitor来监控损失函数的变化。 5. 测试模型 训练完成后,我们可以使用测试数据集来测试模型的性能。 ```python from mindspore.nn.metrics import Accuracy test_ds = ds.NumpySlicesDataset((X_test, y_test)) model_eval = nn.Model(model) accuracy = Accuracy() for data, label in test_ds.create_dict_iterator(): output = model_eval(data) accuracy.update(output, label) print("Accuracy:", accuracy.eval()) ``` 在测试过程中,我们还可以使用Mindspore中的Accuracy来计算模型的准确率。 完整代码如下: ```python from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split import mindspore.nn as nn import mindspore.ops.operations as P from mindspore.nn.optim import Adam import mindspore.dataset as ds from mindspore.train.callback import LossMonitor from mindspore.nn.metrics import Accuracy iris = load_iris() X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2, random_state=42) class LogisticRegression(nn.Cell): def __init__(self): super(LogisticRegression, self).__init__() self.fc = nn.Dense(3, 1) def construct(self, x): x = self.fc(x) return x criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean') optimizer = Adam(params=model.trainable_params(), learning_rate=0.01) train_ds = ds.NumpySlicesDataset((X_train, y_train)) model = LogisticRegression() model_loss = nn.WithLossCell(model, criterion) model_loss_train = nn.TrainOneStepCell(model_loss, optimizer) model_train = nn.Model(model_loss_train) model_train.train(epochs=100, train_dataset=train_ds, callbacks=[LossMonitor()]) test_ds = ds.NumpySlicesDataset((X_test, y_test)) model_eval = nn.Model(model) accuracy = Accuracy() for data, label in test_ds.create_dict_iterator(): output = model_eval(data) accuracy.update(output, label) print("Accuracy:", accuracy.eval()) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值