squeezenet代码_轻量级CNN模型之squeezenet

SqueezeNet

和别的轻量级模型一样,模型的设计目标就是在保证精度的情况下尽量减少模型参数.核心是论文提出的一种叫"fire module"的卷积方式.

设计策略

da9085469ab65279cd07e63b2b89a010.png

主要用1x1卷积核,而不是3x3.

减少3x3卷积核作用的channel.

推迟下采样的时间.以获取更大尺寸的feature map.这一点是处于精度的考虑.毕竟feature map的resolution越大,信息越丰富.下采样主要通过pool来完成或者卷积的时候控制stride大小.

Fire Module

这个就是网络的核心组件了.

deba8704710cbb55174f660a688db90b.png

分2部分:

squeeze convolution layer

expand layer

其中squeeze只有1x1filter,expand layer由1x1和3x3filter组成.

在squeeze层卷积核数记为\(s_{1x1}\),在expand层,记1x1卷积核数为\(e_{1x1}\),而3x3卷积核数为\(e_{3x3}\),这三个属于超参数,可调。为了尽量降低3x3的输入通道数,让\(s_{1x1}

这两层的设计分别体现了策略1(多用1x1filter)和策略2(减少3x3filter作用channel).

首先,squeeze convolution layer通过控制1x1卷积核数量达到把输入的channel数目降低的目的.这个是降低参数的最关键的一步.

然后,分别用1x1卷积核和3x3卷积核去做卷积.然后得到不同depth的输出,concat起来.([x,x,depth1],[x,x,depth2]-->[x,x,depth1+depth2])

import torch

import torch.nn as nn

class Fire(nn.Module):

def __init__(self, inplanes, squeeze_planes,

expand1x1_planes, expand3x3_planes):

super(Fire, self).__init__()

self.inplanes = inplanes

self.squeeze = nn.Conv2d(inplanes, squeeze_planes, kernel_size=1)

self.squeeze_activation = nn.ReLU(inplace=True)

self.expand1x1 = nn.Conv2d(squeeze_planes, expand1x1_planes,

kernel_size=1)

self.expand1x1_activation = nn.ReLU(inplace=True)

self.expand3x3 = nn.Conv2d(squeeze_planes, expand3x3_planes,

kernel_size=3, padding=1)

self.expand3x3_activation = nn.ReLU(inplace=True)

def forward(self, x):

x = self.squeeze_activation(self.squeeze(x))

print(x.shape)

e_1 = self.expand1x1(x)

print(e_1.shape)

e_3 = self.expand3x3(x)

print(e_3.shape)

return torch.cat([

self.expand1x1_activation(e_1),

self.expand3x3_activation(e_3)

], 1)

很显然地,squeeze convolution layer把channel数量降下来了,所以参数少了很多.

以输入tensor为[n,c,h,w]=[1,96,224,224]举例,假设fire module的squeeze layer的卷积核数量为6,expand layer中1x1卷积核数量为5,3x3卷积核数量为4.

则fire module的参数数量为1x1x96x6 + 1x1x6x5 + 3x3x6x4=822.

普通的3x3卷积,得到depth=9的feature map的话需要3x3x96x9=7776个参数.

所以模型才可以做到很小.

网络结构

33847b0b26ea5c984452da44ce9e6c0a.png

基本就是fire module的堆叠.中间穿插了一些maxpool对feature map下采样. 注意一下最后用了dropout以及全局平均池化而不是全连接来完成分类.

最左边的就是类似vgg的堆叠式的结构.中间和右边的参考了resnet的skip-connection.

class SqueezeNet(nn.Module):

def __init__(self, version='1_0', num_classes=1000):

super(SqueezeNet, self).__init__()

self.num_classes = num_classes

if version == '1_0':

self.features = nn.Sequential(

nn.Conv2d(3, 96, kernel_size=7, stride=2),

nn.ReLU(inplace=True),

nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),

Fire(96, 16, 64, 64),

Fire(128, 16, 64, 64),

Fire(128, 32, 128, 128),

nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),

Fire(256, 32, 128, 128),

Fire(256, 48, 192, 192),

Fire(384, 48, 192, 192),

Fire(384, 64, 256, 256),

nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),

Fire(512, 64, 256, 256),

)

elif version == '1_1':

self.features = nn.Sequential(

nn.Conv2d(3, 64, kernel_size=3, stride=2),

nn.ReLU(inplace=True),

nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),

Fire(64, 16, 64, 64),

Fire(128, 16, 64, 64),

nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),

Fire(128, 32, 128, 128),

Fire(256, 32, 128, 128),

nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),

Fire(256, 48, 192, 192),

Fire(384, 48, 192, 192),

Fire(384, 64, 256, 256),

Fire(512, 64, 256, 256),

)

else:

# FIXME: Is this needed? SqueezeNet should only be called from the

# FIXME: squeezenet1_x() functions

# FIXME: This checking is not done for the other models

raise ValueError("Unsupported SqueezeNet version {version}:"

"1_0 or 1_1 expected".format(version=version))

# Final convolution is initialized differently from the rest

final_conv = nn.Conv2d(512, self.num_classes, kernel_size=1)

self.classifier = nn.Sequential(

nn.Dropout(p=0.5),

final_conv,

nn.ReLU(inplace=True),

nn.AdaptiveAvgPool2d((1, 1))

)

for m in self.modules():

if isinstance(m, nn.Conv2d):

if m is final_conv:

init.normal_(m.weight, mean=0.0, std=0.01)

else:

init.kaiming_uniform_(m.weight)

if m.bias is not None:

init.constant_(m.bias, 0)

def forward(self, x):

x = self.features(x)

x = self.classifier(x)

return torch.flatten(x, 1)

.....

with torch.no_grad():

output = model(input_batch)

# Tensor of shape 1000, with confidence scores over Imagenet's 1000 classes

print(output[0])

# The output has unnormalized scores. To get probabilities, you can run a softmax on it.

print(torch.nn.functional.softmax(output[0], dim=0))

CNN结构设计的探索

主要从2个方面做实验探讨了不同结构对模型精度和模型大小的影响.

3218342ffb536b1760f04fb4529e177e.png

fire module怎么设计,squeeze layer和expand layer的filter数量怎么设计

fire module怎么串起来形成一个网络,是简单堆叠还是引入bypass

关于第一点fire module中各种filter占比的实验结果如下图:

1351605900b04c9cc1e27594b5ae047a.png

这里的sr指的是squeeze layer的卷积核数量/expand layer比例.3x3filter比例指expand layer里3x3filter比例.

具体设计参考论文:

0a04fe1e52ec85e42563839db3912a53.png

一点思考:

1x1的卷积核关联了某个位置的feature所有channel上的信息.3x3的卷积核关联了多个位置的feature的所有channel的信息.按道理说3x3的越多应该模型精度越好,但实验数据显示并非如此.可能有些是噪音,3x3卷积参考太多周围的feature反而导致精度下降. 这也是深度学习现在被比较多诟病的一点,太黑盒了.只知道能work,为啥work不好解释.不同的数据集可能不同的参数表现会不一样,很难讲哪个最优,调参比较依赖经验.

关于第二点在layer之间采用不同的连接方式,实验结果如下:

95063e3074cb8cd71cdb18ee79a0e16b.png

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值