Kafka分区与消费者的关系

1.  前言


我们知道,生产者发送消息到主题,消费者订阅主题(以消费者组的名义订阅),而主题下是分区,消息是存储在分区中的,所以事实上生产者发送消息到分区,消费者则从分区读取消息,那么,这里问题来了,生产者将消息投递到哪个分区?消费者组中的消费者实例之间是怎么分配分区的呢?接下来,就围绕着这两个问题一探究竟。

2.  主题的分区数设置


在server.properties配置文件中可以指定一个全局的分区数设置,这是对每个主题下的分区数的默认设置,默认是1。

当然每个主题也可以自己设置分区数量,如果创建主题的时候没有指定分区数量,则会使用server.properties中的设置。

bin/kafka-topics.sh --zookeeper localhost:2181 --create --topic my-topic --partitions 2 --replication-factor 1

在创建主题的时候,可以使用--partitions选项指定主题的分区数量

[root@localhost kafka_2.11-2.0.0]# bin/kafka-topics.sh --describe --zookeeper localhost:2181 --topic abc
Topic:abc       PartitionCount:2        ReplicationFactor:1     Configs:
        Topic: abc      Partition: 0    Leader: 0       Replicas: 0     Isr: 0
        Topic: abc      Partition: 1    Leader: 0       Replicas: 0     Isr: 0

3.  生产者与分区


首先提出一个问题:生产者将消息投递到分区有没有规律?如果有,那么它是如何决定一条消息该投递到哪个分区的呢?

3.1.  默认的分区策略

The default partitioning strategy:

  • If a partition is specified in the record, use it
  • If no partition is specified but a key is present choose a partition based on a hash of the key
  • If no partition or key is present choose a partition in a round-robin fashion

org.apache.kafka.clients.producer.internals.DefaultPartitioner

默认的分区策略是:

  • 如果在发消息的时候指定了分区,则消息投递到指定的分区
  • 如果没有指定分区,但是消息的key不为空,则基于key的哈希值来选择一个分区
  • 如果既没有指定分区,且消息的key也是空,则用轮询的方式选择一个分区
/**
 * Compute the partition for the given record.
 *
 * @param topic The topic name
 * @param key The key to partition on (or null if no key)
 * @param keyBytes serialized key to partition on (or null if no key)
 * @param value The value to partition on or null
 * @param valueBytes serialized value to partition on or null
 * @param cluster The current cluster metadata
 */
public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) {
    List<PartitionInfo> partitions = cluster.partitionsForTopic(topic);
    int numPartitions = partitions.size();
    if (keyBytes == null) {
        int nextValue = nextValue(topic);
        List<PartitionInfo> availablePartitions = cluster.availablePartitionsForTopic(topic);
        if (availablePartitions.size() > 0) {
            int part = Utils.toPositive(nextValue) % availablePartitions.size();
            return availablePartitions.get(part).partition();
        } else {
            // no partitions are available, give a non-available partition
            return Utils.toPositive(nextValue) % numPartitions;
        }
    } else {
        // hash the keyBytes to choose a partition
        return Utils.toPositive(Utils.murmur2(keyBytes)) % numPartitions;
    }
}

通过源代码可以更加作证这一点

4.  分区与消费者


消费者以组的名义订阅主题,主题有多个分区,消费者组中有多个消费者实例,那么消费者实例和分区之前的对应关系是怎样的呢?

换句话说,就是组中的每一个消费者负责那些分区,这个分配关系是如何确定的呢?

同一时刻,一条消息只能被组中的一个消费者实例消费

消费者组订阅这个主题,意味着主题下的所有分区都会被组中的消费者消费到,如果按照从属关系来说的话就是,主题下的每个分区只从属于组中的一个消费者,不可能出现组中的两个消费者负责同一个分区。

那么,问题来了。如果分区数大于或者等于组中的消费者实例数,那自然没有什么问题,无非一个消费者会负责多个分区,(PS:当然,最理想的情况是二者数量相等,这样就相当于一个消费者负责一个分区);但是,如果消费者实例的数量大于分区数,那么按照默认的策略(PS:之所以强调默认策略是因为你也可以自定义策略),有一些消费者是多余的,一直接不到消息而处于空闲状态。

话又说回来,假设多个消费者负责同一个分区,那么会有什么问题呢?

我们知道,Kafka它在设计的时候就是要保证分区下消息的顺序,也就是说消息在一个分区中的顺序是怎样的,那么消费者在消费的时候看到的就是什么样的顺序,那么要做到这一点就首先要保证消息是由消费者主动拉取的(pull),其次还要保证一个分区只能由一个消费者负责。倘若,两个消费者负责同一个分区,那么就意味着两个消费者同时读取分区的消息,由于消费者自己可以控制读取消息的offset,就有可能C1才读到2,而C1读到1,C1还没处理完,C2已经读到3了,则会造成很多浪费,因为这就相当于多线程读取同一个消息,会造成消息处理的重复,且不能保证消息的顺序,这就跟主动推送(push)无异。

4.1.  消费者分区分配策略

org.apache.kafka.clients.consumer.internals.AbstractPartitionAssignor

如果是自定义分配策略的话可以继承AbstractPartitionAssignor这个类,它默认有3个实现

4.1.1.  range

range策略对应的实现类是org.apache.kafka.clients.consumer.RangeAssignor

这是默认的分配策略

可以通过消费者配置中partition.assignment.strategy参数来指定分配策略,它的值是类的全路径,是一个数组

/**
 * The range assignor works on a per-topic basis. For each topic, we lay out the available partitions in numeric order
 * and the consumers in lexicographic order. We then divide the number of partitions by the total number of
 * consumers to determine the number of partitions to assign to each consumer. If it does not evenly
 * divide, then the first few consumers will have one extra partition.
 *
 * For example, suppose there are two consumers C0 and C1, two topics t0 and t1, and each topic has 3 partitions,
 * resulting in partitions t0p0, t0p1, t0p2, t1p0, t1p1, and t1p2.
 *
 * The assignment will be:
 * C0: [t0p0, t0p1, t1p0, t1p1]
 * C1: [t0p2, t1p2]
 */

range策略是基于每个主题的

对于每个主题,我们以数字顺序排列可用分区,以字典顺序排列消费者。然后,将分区数量除以消费者总数,以确定分配给每个消费者的分区数量。如果没有平均划分(PS:除不尽),那么最初的几个消费者将有一个额外的分区。

简而言之,就是,

1、range分配策略针对的是主题(PS:也就是说,这里所说的分区指的某个主题的分区,消费者值的是订阅这个主题的消费者组中的消费者实例)

2、首先,将分区按数字顺序排行序,消费者按消费者名称的字典序排好序

3、然后,用分区总数除以消费者总数。如果能够除尽,则皆大欢喜,平均分配;若除不尽,则位于排序前面的消费者将多负责一个分区

例如,假设有两个消费者C0和C1,两个主题t0和t1,并且每个主题有3个分区,分区的情况是这样的:t0p0,t0p1,t0p2,t1p0,t1p1,t1p2

那么,基于以上信息,最终消费者分配分区的情况是这样的:

C0: [t0p0, t0p1, t1p0, t1p1]

C1: [t0p2, t1p2]

为什么是这样的结果呢?

因为,对于主题t0,分配的结果是C0负责P0和P1,C1负责P2;对于主题t2,也是如此,综合起来就是这个结果

上面的过程用图形表示的话大概是这样的:

阅读代码,更有助于理解:

public Map<String, List<TopicPartition>> assign(Map<String, Integer> partitionsPerTopic,
                                                    Map<String, Subscription> subscriptions) {
    //    主题与消费者的映射                                                            
    Map<String, List<String>> consumersPerTopic = consumersPerTopic(subscriptions);
    Map<String, List<TopicPartition>> assignment = new HashMap<>();
    for (String memberId : subscriptions.keySet())
        assignment.put(memberId, new ArrayList<TopicPartition>());

    for (Map.Entry<String, List<String>> topicEntry : consumersPerTopic.entrySet()) {
        String topic = topicEntry.getKey();    //    主题
        List<String> consumersForTopic = topicEntry.getValue();    //    消费者列表

        //    partitionsPerTopic表示主题和分区数的映射
        //    获取主题下有多少个分区
        Integer numPartitionsForTopic = partitionsPerTopic.get(topic);
        if (numPartitionsForTopic == null)
            continue;

        //    消费者按字典序排序
        Collections.sort(consumersForTopic);

        //    分区数量除以消费者数量
        int numPartitionsPerConsumer = numPartitionsForTopic / consumersForTopic.size();
        //    取模,余数就是额外的分区
        int consumersWithExtraPartition = numPartitionsForTopic % consumersForTopic.size();

        List<TopicPartition> partitions = AbstractPartitionAssignor.partitions(topic, numPartitionsForTopic);
        for (int i = 0, n = consumersForTopic.size(); i < n; i++) {
            int start = numPartitionsPerConsumer * i + Math.min(i, consumersWithExtraPartition);
            int length = numPartitionsPerConsumer + (i + 1 > consumersWithExtraPartition ? 0 : 1);
            //    分配分区
            assignment.get(consumersForTopic.get(i)).addAll(partitions.subList(start, start + length));
        }
    }
    return assignment;
}

4.1.2.  roundrobin(轮询)

roundronbin分配策略的具体实现是org.apache.kafka.clients.consumer.RoundRobinAssignor

/**
 * The round robin assignor lays out all the available partitions and all the available consumers. It
 * then proceeds to do a round robin assignment from partition to consumer. If the subscriptions of all consumer
 * instances are identical, then the partitions will be uniformly distributed. (i.e., the partition ownership counts
 * will be within a delta of exactly one across all consumers.)
 *
 * For example, suppose there are two consumers C0 and C1, two topics t0 and t1, and each topic has 3 partitions,
 * resulting in partitions t0p0, t0p1, t0p2, t1p0, t1p1, and t1p2.
 *
 * The assignment will be:
 * C0: [t0p0, t0p2, t1p1]
 * C1: [t0p1, t1p0, t1p2]
 *
 * When subscriptions differ across consumer instances, the assignment process still considers each
 * consumer instance in round robin fashion but skips over an instance if it is not subscribed to
 * the topic. Unlike the case when subscriptions are identical, this can result in imbalanced
 * assignments. For example, we have three consumers C0, C1, C2, and three topics t0, t1, t2,
 * with 1, 2, and 3 partitions, respectively. Therefore, the partitions are t0p0, t1p0, t1p1, t2p0,
 * t2p1, t2p2. C0 is subscribed to t0; C1 is subscribed to t0, t1; and C2 is subscribed to t0, t1, t2.
 *
 * Tha assignment will be:
 * C0: [t0p0]
 * C1: [t1p0]
 * C2: [t1p1, t2p0, t2p1, t2p2]
 */

轮询分配策略是基于所有可用的消费者和所有可用的分区的

与前面的range策略最大的不同就是它不再局限于某个主题

如果所有的消费者实例的订阅都是相同的,那么这样最好了,可用统一分配,均衡分配

例如,假设有两个消费者C0和C1,两个主题t0和t1,每个主题有3个分区,分别是t0p0,t0p1,t0p2,t1p0,t1p1,t1p2

那么,最终分配的结果是这样的:

C0: [t0p0, t0p2, t1p1]

C1: [t0p1, t1p0, t1p2]

用图形表示大概是这样的:

假设,组中每个消费者订阅的主题不一样,分配过程仍然以轮询的方式考虑每个消费者实例,但是如果没有订阅主题,则跳过实例。当然,这样的话分配肯定不均衡。

什么意思呢?也就是说,消费者组是一个逻辑概念,同组意味着同一时刻分区只能被一个消费者实例消费,换句话说,同组意味着一个分区只能分配给组中的一个消费者。事实上,同组也可以不同订阅,这就是说虽然属于同一个组,但是它们订阅的主题可以是不一样的。

例如,假设有3个主题t0,t1,t2;其中,t0有1个分区p0,t1有2个分区p0和p1,t2有3个分区p0,p1和p2;有3个消费者C0,C1和C2;C0订阅t0,C1订阅t0和t1,C2订阅t0,t1和t2。那么,按照轮询分配的话,C0应该负责

首先,肯定是轮询的方式,其次,比如说有主题t0,t1,t2,它们分别有1,2,3个分区,也就是t0有1个分区,t1有2个分区,t2有3个分区;有3个消费者分别从属于3个组,C0订阅t0,C1订阅t0和t1,C2订阅t0,t1,t2;那么,按照轮询分配的话,C0应该负责t0p0,C1应该负责t1p0,其余均由C2负责。

上述过程用图形表示大概是这样的:

为什么最后的结果是

C0: [t0p0]

C1: [t1p0]

C2: [t1p1, t2p0, t2p1, t2p2]

这是因为,按照轮询t0p1由C0负责,t1p0由C1负责,由于同组,C2只能负责t1p1,由于只有C2订阅了t2,所以t2所有分区由C2负责,综合起来就是这个结果

细想一下可以发现,这种情况下跟range分配的结果是一样的

5.  测试代码

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>com.cjs.example</groupId>
    <artifactId>kafka-demo</artifactId>
    <version>0.0.1-SNAPSHOT</version>
    <packaging>jar</packaging>

    <name>kafka-demo</name>
    <description></description>

    <parent>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-parent</artifactId>
        <version>2.0.5.RELEASE</version>
        <relativePath/> <!-- lookup parent from repository -->
    </parent>

    <properties>
        <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
        <project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>
        <java.version>1.8</java.version>
    </properties>

    <dependencies>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.kafka</groupId>
            <artifactId>spring-kafka</artifactId>
        </dependency>

        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-test</artifactId>
            <scope>test</scope>
        </dependency>
    </dependencies>

    <build>
        <plugins>
            <plugin>
                <groupId>org.springframework.boot</groupId>
                <artifactId>spring-boot-maven-plugin</artifactId>
            </plugin>
        </plugins>
    </build>

</project>
package com.cjs.kafka.producer;

import org.apache.kafka.clients.producer.*;

import java.util.Properties;

public class HelloProducer {

    public static void main(String[] args) {

        Properties props = new Properties();
        props.put("bootstrap.servers", "192.168.1.133:9092");
        props.put("acks", "all");
        props.put("retries", 0);
        props.put("batch.size", 16384);
        props.put("linger.ms", 1);
        props.put("buffer.memory", 33554432);
        props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");

        Producer<String, String> producer = new KafkaProducer<String, String>(props);
        for (int i = 0; i < 100; i++) {
            producer.send(new ProducerRecord<String, String>("abc", Integer.toString(i), Integer.toString(i)), new Callback() {
                @Override
                public void onCompletion(RecordMetadata recordMetadata, Exception e) {
                    if (null != e) {
                        e.printStackTrace();
                    }else {
                        System.out.println("callback: " + recordMetadata.topic() + " " + recordMetadata.partition() + " " + recordMetadata.offset());
                    }
                }
            });
        }
        producer.close();

    }
}
package com.cjs.kafka.consumer;

import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;

import java.util.Arrays;
import java.util.Properties;

public class HelloConsumer {

    public static void main(String[] args) {
        Properties props = new Properties();
        props.put("bootstrap.servers", "192.168.1.133:9092");
        props.put("group.id", "test");
        props.put("enable.auto.commit", "true");
        props.put("auto.commit.interval.ms", "1000");
//        props.put("partition.assignment.strategy", "org.apache.kafka.clients.consumer.RoundRobinAssignor");
        props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
        props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
        KafkaConsumer<String, String> consumer = new KafkaConsumer<String, String>(props);
        consumer.subscribe(Arrays.asList("foo", "bar", "abc"));
        while (true) {
            ConsumerRecords<String, String> records = consumer.poll(100);
            for (ConsumerRecord<String, String> record : records) {
                System.out.printf("partition = %s, offset = %d, key = %s, value = %s%n", record.partition(), record.offset(), record.key(), record.value());
            }
        }
    }
}

6.  参考


http://kafka.apache.org/documentation/#consumerconfigs

https://blog.csdn.net/feelwing1314/article/details/81097167

https://blog.csdn.net/OiteBody/article/details/80595971

https://blog.csdn.net/YChenFeng/article/details/74980531

 

Kafka 分区数与 brokers(Kafka 服务节点)之间有一定的关系,具体体现在以下几个方面: 1. 分区分布:Kafka 的主题(Topic)被分为多个分区,每个分区都会被分配到不同的 broker 上。分区数决定了一个主题可以被分配到多少个 broker 上进行并行处理。如果分区数小于 brokers 数量,那么部分 broker 可能会没有分配到分区,造成资源浪费;如果分区数大于 brokers 数量,那么每个 broker 上可能会有多个分区,增加了并行处理的能力。 2. 吞吐量和并行度:Kafka分区数也会影响消费者(Consumer)的吞吐量和并行度。每个消费者可以独立地消费一个或多个分区的消息,因此增加分区数可以提高消费者的并行度,从而提高整体的吞吐量。 3. 容错性:Kafka 使用分区副本(Replica)来实现容错性。每个分区都可以有多个副本分布在不同的 broker 上,以防止数据丢失。在创建主题时,可以设置副本因子(Replication Factor)来决定一个主题的每个分区应该有多少个副本。通常建议将副本因子设置为不小于 brokers 数量的值,以确保每个 broker 都能存储主题的副本。 需要根据应用程序的需求和系统环境来设置适当的分区数和 brokers 数量,并保持它们之间的平衡。 总结起来,Kafka 分区数与 brokers 之间的关系主要体现在分区分布、吞吐量和并行度以及容错性方面。分区数的设置应考虑到消费者的并行度、吞吐量需求和副本的容错性要求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值