今天说课,我把我用$\LaTeX$ beamer做的幻灯片传到这里共享.
View Code
1 \documentclass{beamer} 2 \usepackage{amsmath} 3 \usepackage{amsthm} 4 \usepackage{amssymb} 5 \usepackage{amsfonts} 6 \usepackage{graphicx,color} 7 \usepackage{mathrsfs} 8 \usepackage[all]{xy} 9 \usepackage{fancybox} 10 \usepackage{CJKutf8} 11 \usetheme{AnnArbor} 12 \begin{document} 13 \begin{CJK}{UTF8}{gbsn} 14 \title{排序不等式说课}\author{叶卢庆}\institute{杭州师范大学理学院数学 15 101}\date{2012.11.6} 16 \begin{frame} 17 \titlepage 18 \end{frame} 19 20 \begin{frame} 21 \frametitle{教材} 22 人教版高中数学选修4-5:《不等式选讲》第3.3节 23 \end{frame} 24 \begin{frame} 25 \frametitle{教学目的} 26 \begin{enumerate} 27 \item 教学生排序不等式,让他们理解排序不等式中的证明方法:逐步调整法. 28 \item 让学生明白解决复杂问题的通用手段:先解决简单情形,解决特殊情形, 29 再向一般的复杂的问题发起进攻.一步登天往往是难以实现的,我们需要一步 30 一步慢慢向我们的目标靠近. 31 \end{enumerate} 32 \end{frame} 33 \begin{frame} \frametitle{排序不等式是为了解答如下极值问题:} 34 设$$a_1,a_2,\cdots,a_n$$是$n$个实数,且$$a_1\leq a_2\leq\cdots \leq 35 a_n$$.$$b_1,b_2,\cdots,b_n$$是另外$n$个实数,且$$b_1\leq b_2\leq\cdots\leq 36 b_n$$设$c_1,c_2,\cdots,c_n$是$b_1,b_2,\cdots,b_n$的一个排列,则 37 乘积 38 \begin{equation} 39 \label{eq:6.10.52} 40 a_1c_1+a_2c_2+\cdots+a_nc_n 41 \end{equation} 42 何时最大? 43 \end{frame} 44 45 \begin{frame} 46 \frametitle{解决问题的一个重要手段:先考察特殊情形.$n=2$时} 47 我们考察$n=2$时,怎么解决这个问题.分两种情况: 48 \begin{enumerate} 49 \item $c_1=b_1,c_2=b_2$,此时\begin{equation}\label{eq:1}a_1c_1+a_2c_2=a_1b_1+a_2b_2\end{equation}. 50 \item $c_1=b_2,c_2=b_1$,此时\begin{equation}\label{eq:2}a_1c_1+a_2c_2=a_1b_2+a_2b_1\end{equation}. 51 \end{enumerate}\pause 52 做差.式\ref{eq:1}-式 53 \ref{eq:2}:$(a_1b_1+a_2b_2)-(a_1b_2+a_2b_1)=(a_1-a_2)(b_1-b_2)\geq 0$ 54 55 \end{frame} 56 \begin{frame} 57 \frametitle{$n=2$时的结论} 58 当$c_1=b_1,c_2=b_2$时,乘积 59 \begin{equation} 60 \label{eq:3} 61 a_1c_{1}+a_{2}c_2 62 \end{equation}最大.\pause 但是解决$n=2$的情形并不能给我们解决一般情 63 形带来提示,为此我们继续看$n=3$的情形.\end{frame} 64 \begin{frame} 65 \frametitle{$n=3$时} 66 \begin{equation} 67 a_1c_1+a_2c_2+a_3c_3 68 \end{equation}何时最大? 69 此时比较麻烦,因为$b_1,b_2,b_3$的排列共有$3!=6$种 70 情形,用求差法一一验证起来比较麻烦.而且一旦$n=3$的情形解决完毕仍然不 71 能给一般情形的解决带来提示,我们就会继续考察$n=4$的情况,那个时候就会 72 出现$4!=24$种需要验证的情形,那样的话问题就不是人的耐心所能解决的了, 73 而要依赖计算机帮助我们发现.但是人类的智慧给我们带来了逐步调整法,我 74 们不必用计算机发现规律了. 75 \end{frame} 76 \begin{frame} 77 \frametitle{逐步调整法} 78 逐步调整法是这样一种方法,打个比方,我们现在要从状态$A$达到状态 79 $B$:$$A\to B$$, 80 直接变的话比较困难,但是从$A$到$B$存在好几个中间状态 81 $M_1,M_2,\cdots,M_k$,那么我们就可以这样变: 82 \begin{equation} 83 A\to M_1\to M_2\to \cdots\to M_k\to B 84 \end{equation}它实际上是一种局部的方法,通过不断改变局部,局部的效应 85 累积,最终达到影响全貌的效果. 86 \end{frame} 87 88 \begin{frame} 89 \frametitle{用逐步调整的思想来看$n=3$的情形} 90 \begin{equation} 91 a_1c_1+a_2c_2+a_3c_3 92 \end{equation} 93 我们先比较这两种情况: 94 \begin{enumerate} 95 \item $c_3\leq c_2\leq c_1$\\ 96 \item $c_2\leq c_3\leq c_1$\\ 97 \item $c_2\leq c_1\leq c_3$\\ 98 \item $c_1\leq c_2\leq c_3$\\ 99 \end{enumerate}\pause 从情形1到情形4,每相邻两种情形都只调整一项.而且 100 根据$n=2$的已解决情况,发现 101 \begin{equation} 102 \label{eq:fuck} 103 \mbox{式1}\leq \mbox{式2}\leq \mbox{式3}\leq \mbox{式4} 104 \end{equation} 105 106 107 \end{frame} 108 \begin{frame} 109 \frametitle{$n=3$的结论} 110 当$c_1=b_1,c_2=b_2,c_3=b_3$时最大,最大为 111 \begin{equation} 112 \label{eq:dfd} 113 a_1b_{1}+a_2b_2+a_3b_3 114 \end{equation}\pause 115 顺便可得最小为 116 \begin{equation} 117 \label{eq:dfdfd} 118 a_1b_3+a_2b_2+a_3b_1 119 \end{equation} 120 \end{frame} 121 \begin{frame} 122 \frametitle{一般情形} 123 一般情形的讨论完全仿照$n=3$时的情形. 124 \end{frame} 125 \end{CJK} 126 \end{document}