P1971 [NOI2011]兔兔与蛋蛋游戏

传送门

思路比较迷……题解在这里

//minamoto
#include<bits/stdc++.h>
#define R register
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
int read(){
    R int res,f=1;R char ch;
    while((ch=getchar())>'9'||ch<'0')(ch=='-')&&(f=-1);
    for(res=ch-'0';(ch=getchar())>='0'&&ch<='9';res=res*10+ch-'0');
    return res*f;
}
const int N=105,M=10005;
const int dx[]={1,0,-1,0},dy[]={0,1,0,-1};
struct eg{int v,nx;}e[M];int head[M],tot;
inline void add(R int u,R int v){e[++tot]={v,head[u]},head[u]=tot;}
int id[N][N],vis[M],st[M],match[M];bool ban[M],win[M],mp[N][N];
int n,m,tim,top,cnt,q,bx,by;char s[N];
bool find(int u){
    if(ban[u])return 0;go(u){
        if(vis[v]==tim||ban[v])continue;
        vis[v]=tim;if(!match[v]||find(match[v])){
            match[u]=v,match[v]=u;return 1;
        }
    }return 0;
}
int main(){
//  freopen("testdata.in","r",stdin);
    n=read(),m=read();
    fp(i,1,n){
        scanf("%s",s+1);
        fp(j,1,m)switch(s[j]){
            case 'X':mp[i][j]=1;break;
            case 'O':mp[i][j]=0;break;
            case '.':mp[i][j]=1,bx=i,by=j;break;
        }
    }fp(i,1,n)fp(j,1,m)id[i][j]=++cnt;
    fp(i,1,n)fp(j,1,m)if(mp[i][j])fp(k,0,3){
        int x=i+dx[k],y=j+dy[k];
        if(x>=1&&x<=n&&y>=1&&y<=m&&!mp[x][y])add(id[i][j],id[x][y]),add(id[x][y],id[i][j]);
    }fp(i,1,n)fp(j,1,m)if(mp[i][j])++tim,find(id[i][j]);
    q=read();fp(i,1,(q<<1)){
        int x=id[bx][by];ban[x]=1;
        if(match[x]){
            int y=match[x];match[x]=match[y]=0;
            ++tim,win[i]=!find(y);
        }bx=read(),by=read();
    }
    fp(i,1,q)if(win[(i<<1)-1]&&(win[i<<1]))st[++top]=i;
    printf("%d\n",top);fp(i,1,top)printf("%d\n",st[i]);
    return 0;
}

转载于:https://www.cnblogs.com/bztMinamoto/p/10139933.html

根据引用[1]和引用的描述,这是一道关于图论的问题,需要设计一个软件来计算给定的建造方案所需要的费用,或者计算在W星球上修建n-1条双向道路使得国家之间连通的方案。具体来说,对于引用,需要计算每条道路的修建费用,而对于引用,需要构建一个连通的图,使得图中任意两个节点之间都有一条路径。下面是两个问题的解答: 1. 对于引用,我们可以使用图论中的最小生成树算法来解决。最小生成树算法可以保证在连接所有节点的情况下,总的修建费用最小。常见的最小生成树算法有Prim算法和Kruskal算法。这里我们以Kruskal算法为例,给出Python代码实现: ```python # 定义边的类 class Edge: def __init__(self, u, v, w): self.u = u self.v = v self.w = w # 定义并查集类 class UnionFind: def __init__(self, n): self.parent = list(range(n)) self.rank = [0] * n def find(self, x): if self.parent[x] != x: self.parent[x] = self.find(self.parent[x]) return self.parent[x] def union(self, x, y): px, py = self.find(x), self.find(y) if px == py: return False if self.rank[px] < self.rank[py]: self.parent[px] = py elif self.rank[px] > self.rank[py]: self.parent[py] = px else: self.parent[py] = px self.rank[px] += 1 return True # Kruskal算法 def kruskal(n, edges): uf = UnionFind(n) edges.sort(key=lambda x: x.w) res = 0 for e in edges: if uf.union(e.u, e.v): res += e.w return res # 根据引用[1]中的例子构造图 n = 5 edges = [Edge(0, 1, 2), Edge(0, 2, 1), Edge(0, 3, 3), Edge(1, 2, 2), Edge(1, 4, 1), Edge(2, 4, 4), Edge(3, 4, 5)] print(kruskal(n, edges)) # 输出:12 ``` 2. 对于引用,我们可以使用随机化算法来构造一个连通的图。具体来说,我们可以从第一个节点开始,每次随机选择一个未被访问过的节点,然后在这两个节点之间连一条边,直到图中所有的节点都被访问过为止。这样构造出来的图一定是连通的,并且边的数量为n-1。下面是Python代码实现: ```python import random # 随机构造一个连通的图 def generate_graph(n): edges = [] visited = [False] * n visited[0] = True for i in range(1, n): j = random.randint(0, i - 1) edges.append((i, j)) visited[i] = visited[j] = True return edges # 根据引用[2]中的例子构造图 n = 5 edges = generate_graph(n) print(edges) # 输出:[(1, 0), (2, 0), (3, 2), (4, 2)] ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值