题目链接:戳这里
2437: [Noi2011]兔兔与蛋蛋
Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 788 Solved: 500
[ Submit][ Status][ Discuss]
Description
Input
输入的第一行包含两个正整数 n、m。
接下来 n行描述初始棋盘。其中第i 行包含 m个字符,每个字符都是大写英文字母"X"、大写英文字母"O"或点号"."之一,分别表示对应的棋盘格中有黑色棋子、有白色棋子和没有棋子。其中点号"."恰好出现一次。
接下来一行包含一个整数 k(1≤k≤1000) ,表示兔兔和蛋蛋各进行了k次操作。
接下来 2k行描述一局游戏的过程。其中第 2i – 1行是兔兔的第 i 次操作(编号为i的操作) ,第2i行是蛋蛋的第i次操作。每个操作使用两个整数x,y来描述,表示将第x行第y列中的棋子移进空格中。
输入保证整个棋盘中只有一个格子没有棋子, 游戏过程中兔兔和蛋蛋的每个操作都是合法的,且最后蛋蛋获胜。
Output
输出文件的第一行包含一个整数r,表示兔兔犯错误的总次数。
接下来r 行按递增的顺序给出兔兔“犯错误”的操作编号。其中第 i 行包含一个整数ai表示兔兔第i 个犯错误的操作是他在游戏中的第 ai次操作。
1 ≤n≤ 40, 1 ≤m≤ 40
Sample Input
样例一:
1 6
XO.OXO
1
1 2
1 1
样例二:
3 3
XOX
O.O
XOX
4
2 3
1 3
1 2
1 1
2 1
3 1
3 2
3 3
样例三:
4 4
OOXX
OXXO
OO.O
XXXO
2
3 2
2 2
1 2
1 3
1 6
XO.OXO
1
1 2
1 1
样例二:
3 3
XOX
O.O
XOX
4
2 3
1 3
1 2
1 1
2 1
3 1
3 2
3 3
样例三:
4 4
OOXX
OXXO
OO.O
XXXO
2
3 2
2 2
1 2
1 3
Sample Output
样例一:
1
1
样例二:
0
样例三:
2
1
2
样例1对应图一中的游戏过程
样例2对应图三中的游戏过程
1
1
样例二:
0
样例三:
2
1
2
样例1对应图一中的游戏过程
样例2对应图三中的游戏过程
HINT
Source
做完这题感觉重学了一遍二分图...QAQ我还是太菜了。
感觉二分图博弈的基本模型就是两个人轮流操作,谁不能走谁输,并且有一个格子不能走两遍之类的限制条件,最终可以推得二分图的增广轨是一条合法的移动路径。
对于此题,首先可以推得:距离起点曼哈顿距离为偶数的黑格可达,距离起点曼哈顿距离为奇数的白格可达,因为是白方先手,不妨将起点变成黑格,然后对可达的相邻格子连边构造二分图。
显然一条增广轨是一个合法的移动轨迹,接下来就是如何判断必胜必败态了。
如果起点不是最大匹配的必需点,那么后手必胜。因为第一步走到的点,一定在不包括起点的最大匹配中,那么后手就可以沿着走匹配边获胜。
然后就是如何判断一个点是否是最大匹配的必需点了。
对于一个点,如果将它删去,从其原匹配点出发依旧能找到增广路,则说明不是必需点。
对于每次操作,如果走之前是必胜态,走之后还是必胜态(此时为对手回合),那么说明走错了。
据此判断即可。
代码:
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
int read()
{
char c;int sum=0,f=1;c=getchar();
while(c<'0' || c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0' && c<='9'){sum=sum*10+c-'0';c=getchar();}
return sum*f;
}
int n,m;
char s[45][45];
int head[45*45],cnt;
struct Edge{
int to,nex;
}edge[45*45*4];
void add(int u,int v)
{
edge[++cnt].to=v;
edge[cnt].nex=head[u];
head[u]=cnt;
}
int a[45][45],sx,sy,tot;
int vis[45*45],tot_vis,match[45*45];
bool del[45*45];
bool dfs(int x)
{
for(int i=head[x];i;i=edge[i].nex)
{
int nex=edge[i].to;
if(del[nex]) continue;
if(vis[nex]==tot_vis) continue;
vis[nex]=tot_vis;
if(!match[nex] || dfs(match[nex]))
{
match[nex]=x;
match[x]=nex;
return true;
}
}
return false;
}
int q;
bool win[45*45];
int main()
{
n=read();m=read();
for(int i=1;i<=n;i++)
scanf("%s",s[i]+1);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
{
if(s[i][j]=='.')
{
sx=i;
sy=j;
s[i][j]='X';
break;
}
}
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
{
if((s[i][j]=='O'&&(abs(i-sx)+abs(j-sy))%2==1) || (s[i][j]=='X'&&(abs(i-sx)+abs(j-sy))%2==0))
a[i][j]=++tot;
}
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
{
if(a[i][j])
{
if(a[i-1][j]) add(a[i][j],a[i-1][j]);
if(a[i+1][j]) add(a[i][j],a[i+1][j]);
if(a[i][j-1]) add(a[i][j],a[i][j-1]);
if(a[i][j+1]) add(a[i][j],a[i][j+1]);
}
}
for(int i=1;i<=tot;i++)
{
if(!match[i])
{
tot_vis++;
dfs(i);
}
}
q=read()*2;
for(int i=1;i<=q;i++)
{
int u=a[sx][sy];
if(match[u])
{
int v=match[u];
match[v]=match[u]=0;
del[u]=1;
tot_vis++;
win[i]=!dfs(v);
}
else
{
del[u]=1;
win[i]=false;
}
sx=read();sy=read();
}
int ans=0;
for(int i=1;i<=q;i+=2)
if(win[i]&&win[i+1])
ans++;
printf("%d\n",ans);
for(int i=1;i<=q;i+=2)
if(win[i]&&win[i+1])
printf("%d\n",(i+1)>>1);
return 0;
}