java插入排序_Java 排序算法

直接插入排序是一种简单直观的排序算法,它的工作原理是通过构造一个有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。本文详细介绍了直接插入排序的基本思想、算法描述、代码实现以及复杂度分析,包括两种不同的插入方式,并讨论了其稳定性。
摘要由CSDN通过智能技术生成

插入排序的设计初衷是往有序的数组中快速插入一个新的元素。它的算法思想是:把要排序的数组分为了两个部分, 一部分是数组的全部元素(除去待插入的元素), 另一部分是待插入的元素; 先将第一部分排序完成, 然后再插入这个元素. 其中第一部分的排序也是通过再次拆分为两部分来进行的.

插入排序由于操作不尽相同, 可分为 直接插入排序 , 折半插入排序(又称二分插入排序), 链表插入排序 , 希尔排序 。我们先来看下直接插入排序。

1、基本思想

直接插入排序的基本思想是:将数组中的所有元素依次跟前面已经排好的元素相比较,如果选择的元素比已排序的元素小,则交换,直到全部元素都比较过为止。

a563bfdca0774f0376066bf968a10c31.gif

2、算法描述

一般来说,插入排序都采用in-place在数组上实现。具体算法描述如下:

①. 从第一个元素开始,该元素可以认为已经被排序

②. 取出下一个元素,在已经排序的元素序列中从后向前扫描

③. 如果该元素(已排序)大于新元素,将该元素移到下一位置

④. 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置

⑤. 将新元素插入到该位置后

⑥. 重复步骤②~⑤

90d93b921647843fd3025a47e78bee23.gif

算法实现中比较有意思的一点是,在每次比较操作发现取出来的新元素小于等于已排序的元素时,可以将已排序的元素移到下一位置,然后将取出来的新元素插入该位置(即相邻位置对调),接着再与前面的已排序的元素进行比较,如上图所示,这样做缺点是交换操作代价比较大。另一种做法是:将新元素取出(挖坑),从左到右依次与已排序的元素比较,如果已排序的元素大于取出的新元素,那么将该元素移动到下一个位置(填坑),接着再与前面的已排序的元素比较,直到找到已排序的元素小于等于新元素的位置,这时再将新元素插入进去。就像基本思想中的动图演示的那样。

如果比较操作的代价比交换操作大的话,可以采用二分查找法来减少比较操作的数目。可以认为是插入排序的一个变种,称为二分查找插入排序。

3、代码实现

/**

* 插入排序

*

* 1\. 从第一个元素开始,该元素可以认为已经被排序

* 2\. 取出下一个元素,在已经排序的元素序列中从后向前扫描

* 3\. 如果该元素(已排序)大于新元素,将该元素移到下一位置

* 4\. 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置

* 5\. 将新元素插入到该位置后

* 6\. 重复步骤2~5

* @param arr 待排序数组

*/

public static void insertionSort(int[] arr){

for( int i = 1; i < arr.length; i++ ) {

int temp = arr[i]; // 取出下一个元素,在已经排序的元素序列中从后向前扫描

for( int j = i; j >= 0; j-- ) {

if( j > 0 && arr[j-1] > temp ) {

arr[j] = arr[j-1]; // 如果该元素(已排序)大于取出的元素temp,将该元素移到下一位置

System.out.println("Temping: " + Arrays.toString(arr));

} else {

// 将新元素插入到该位置后

arr[j] = temp;

System.out.println("Sorting: " + Arrays.toString(arr));

break;

}

}

}

}

// 交换次数较多的实现

public static void insertionSort(int[] arr){

for( int i=0; i

for( int j=i+1; j>0; j-- ) {

if( arr[j-1] <= arr[j] )

break;

int temp = arr[j]; //交换操作

arr[j] = arr[j-1];

arr[j-1] = temp;

System.out.println("Sorting: " + Arrays.toString(arr));

}

}

}

直接插入排序复杂度如下:

最好情况下,排序前对象已经按照要求的有序。比较次数(KCN):n−1n−1;移动次数(RMN)为00。则对应的时间复杂度为O(n)O(n)。

最坏情况下,排序前对象为要求的顺序的反序。第i趟时第i个对象必须与前面i个对象都做排序码比较,并且每做1次比较就要做1次数据移动(从上面给出的代码中看出)。比较次数(KCN):∑n−1i=1i=n(n−1)2≈n22∑i=1n−1i=n(n−1)2≈n22 ; 移动次数(RMN)为:∑n−1i=1i=n(n−1)2≈n22∑i=1n−1i=n(n−1)2≈n22。则对应的时间复杂度为O(n2)O(n2)。

如果排序记录是随机的,那么根据概率相同的原则,在平均情况下的排序码比较次数和对象移动次数约为n22n22,因此,直接插入排序的平均时间复杂度 为O(n2)O(n2)。

平均时间复杂度

最好情况

最坏情况

空间复杂度

O(n²)

O(n)

O(n²)

O(1)

Tips: 由于直接插入排序每次只移动一个元素的位, 并不会改变值相同的元素之间的排序, 因此它是一种稳定排序。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值