分数的表示以及计算(c++)

之前一直总是简单的想将分数化为小数进行计算,其实使用相应的结构进行分子分母的分开保存,可以有奇效;

分数的存储:

struct Fraction{
    int up;
    int down;
};

其中up代表分子,down代表分母;

对于分数,有基本的几个规则:
1.正负号挂在分子上;
2.当分数表示0的时候,分子为0,分母为1;
3.分子分母必须达到最简,也就是没有1以外的公约数

当分数进行四则运算的时候,也是基于这三条的性质来进行化简;

Fraction reduction(Fraction result){
    if(result.down<0){
        result.up=-result.up;
        result.down=-result.down;
    }
    if(result.up==0){
        result.down=1;
    }else{
        int d=gcd(abs(result.up),abs(result.down));
        result.up/=d;
        result.down/=d;
    }
    return result;
}

其中值得注意的是进行最大公约数计算的时候一定要注意注意分子可能为负,所以要进行绝对值的提前处理;

分数的四则运算:
在上述化简函数的基础上,我们就可以根据该规则进行相应的四则运算,四则运算严格遵循计算的通分规律;
1.加法运算:

Fraction add(Fraction f1,Fraction f2){
    Fraction result;
    result.up=f1.up*f2.down+f2.up*f1.down;
    result.down=f1.down*f2.down;
    return reduction(result);
}

2.减法运算:

Fraction minu(Fraction f1,Fraction f2){
    Fraction result;
    result.up=f1.up*f2.down-f1.down*f2.up;
    result.down=f1.down*f2.down;
    return reduction(result);
}

3.乘法运算

Fraction multi(Fraction f1,Fraction f2){
    Fraction result;
    result.up=f1.up*f2.up;
    result.down=f2.down*f2.down;
    return reduction(result);
}

4.除法运算:

Fraction divide(Fraction f1,Fraction f2){
    Fraction result;
    result.up=f1.up*f2.down;
    result.down=f2.up*f2.down;
    return reduction(result);
}

值得注意的是这里采用的除法的倒数计算;

分数的输出形式:
对于一个正常形式的分数,往往有三种形式:
1.整数:此时只输出分子(由于程序代码里对分子分母进行化简,所以如果有整数分母一定为1);
2.真分数:此时按照a/b的格式输出;
3.假分数:此时应该在按照带分数的格式输出,并且符号在前;

代码如下:

void showResult(Fraction r){
    r=reduction(r);
    if(r.down==1)
        printf("%lld",r.up);
    else if(abs(r.up)>r.down){
        printf("%d %d/%d",r.up/r.down,abs(r.up)%r.down,r.down);
    }else{
        printf("%d/%d",r.up,r.down);
    }
}

值得注意的是当进行带分数计算的时候,计算其后真分数余数的时候,一定要注意abs绝对值得处理;

### C++分数计算的实现 以下是基于已有引用内容以及专业知识构建的一个完整的分数计算实现方案。 #### 分数结构定义 为了表示分数,可以使用 `struct` 定义一个简单的数据结构[^3]: ```cpp struct Fraction { int numerator; // 分子 int denominator; // 分母 }; ``` 此结构体用于存储分数的分子和分母部分。 --- #### 分数化简函数 在进行任何操作之前,通常需要对分数进行化简。可以通过最大公约数(GCD)来完成这一任务。以下是一个 GCD 函数及其应用到分数化的代码片段[^4]: ```cpp #include <iostream> using namespace std; // 辗转相除法求最大公约数 int gcd(int a, int b) { while (b != 0) { int temp = a % b; a = b; b = temp; } return a; } // 化简分数 void simplify(Fraction& frac) { if (frac.denominator == 0) { cout << "Error: Division by zero!" << endl; exit(1); } int common_divisor = gcd(abs(frac.numerator), abs(frac.denominator)); frac.numerator /= common_divisor; frac.denominator /= common_divisor; if (frac.denominator < 0) { // 确保分母为正 frac.numerator *= -1; frac.denominator *= -1; } } ``` 上述代码实现了分数的自动简化功能,并处理了负号逻辑。 --- #### 运算符重载实现四则运算 通过运算符重载技术,可以让分数支持加、减、乘、除等基本运算。下面展示了一个简单版本的实现方式: ```cpp Fraction operator+(const Fraction& lhs, const Fraction& rhs) { Fraction result; result.numerator = lhs.numerator * rhs.denominator + rhs.numerator * lhs.denominator; result.denominator = lhs.denominator * rhs.denominator; simplify(result); // 自动化简 return result; } Fraction operator-(const Fraction& lhs, const Fraction& rhs) { Fraction result; result.numerator = lhs.numerator * rhs.denominator - rhs.numerator * lhs.denominator; result.denominator = lhs.denominator * rhs.denominator; simplify(result); return result; } Fraction operator*(const Fraction& lhs, const Fraction& rhs) { Fraction result; result.numerator = lhs.numerator * rhs.numerator; result.denominator = lhs.denominator * rhs.denominator; simplify(result); return result; } Fraction operator/(const Fraction& lhs, const Fraction& rhs) { if (rhs.numerator == 0) { cout << "Error: Division by zero fraction!" << endl; exit(1); } Fraction result; result.numerator = lhs.numerator * rhs.denominator; result.denominator = lhs.denominator * rhs.numerator; simplify(result); return result; } ``` 这些运算符允许用户以自然的方式执行分数之间的加减乘除操作。 --- #### 输入输出流的支持 为了让程序能够方便地读取和显示分数,还可以重载输入/输出流操作符: ```cpp istream& operator>>(istream& is, Fraction& frac) { char slash; is >> frac.numerator >> slash >> frac.denominator; simplify(frac); // 输入后立即化简 return is; } ostream& operator<<(ostream& os, const Fraction& frac) { os << frac.numerator << "/" << frac.denominator; return os; } ``` 这样就可以轻松地从标准输入获取分数并将其打印出来。 --- #### 主函数示例 最后提供一段测试用的主函数代码,演示如何综合运用以上各部分内容: ```cpp int main() { Fraction f1, f2, sum, diff, product, quotient; cout << "Enter first fraction (numerator/denominator): "; cin >> f1; cout << "Enter second fraction (numerator/denominator): "; cin >> f2; sum = f1 + f2; diff = f1 - f2; product = f1 * f2; quotient = f1 / f2; cout << "\nResults:\n"; cout << f1 << " + " << f2 << " = " << sum << endl; cout << f1 << " - " << f2 << " = " << diff << endl; cout << f1 << " * " << f2 << " = " << product << endl; cout << f1 << " / " << f2 << " = " << quotient << endl; return 0; } ``` 运行该程序时,它会提示用户分别输入两个分数,随后依次显示出它们之间各种运算的结果。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值