抽象函数的对称性验证

抽象函数的性质往往不太好想,所以举个例子,加以验证。

作为学生,不需要知道那么严谨的逻辑证明,只要会用结论就行了。

1、函数的对称性图像说明:

轴对称函数所举的例子:\(f(x)=\cfrac{1}{4}(x-2)^2\)

【结论】若函数\(f(x)\)满足条件\(f(x)=f(4-x)\),则函数是轴对称图形,

其对称轴是\(x=\cfrac{(x)+(4-x)}{2}=2\)

中心对称函数所举的例子:\(f(x)=(x-1)^3\)

【结论】若函数\(g(x)\)满足条件\(g(x)+g(2-x)=0\),则函数是中心对称图形,

其对称中心是\((x_0,y_0)\),具体坐标算法为\(x_0=\cfrac{(x)+(2-x)}{2}=1\)

\(y_0=\cfrac{y_1+y_2}{2}=\cfrac{g(x)+g(2-x)}{2}=\cfrac{0}{2}=0\)

2、函数的对称性的逻辑证明:

①、函数\(f(x)\)的对称轴为直线\(x=2\)的充要条件是函数\(f(x)\)满足\(f(x)=f(4-x)\)

充分性:函数\(f(x)\)满足\(f(x)=f(4-x)\),取其上任意一点\((x_0,y_0)\)

则有\(y_0=f(x_0)\),则有\(f(x_0)=f(4-x_0)=y_0\)

说明点\((x_0,y_0)\)和点\((4-x_0,y_0)\)都在函数图像上,

而这两个点关于直线\(x=\cfrac{x_0+(4-x_0)}{2}=2\)对称,

又由于点的任意性可知,函数关于直线\(x=2\)对称;

必要性:函数\(f(x)\)的对称轴为直线\(x=2\)

取其上任意一点\((x_0,y_0)\),则有\(y_0=f(x_0)\)

而点\((x_0,y_0)\)关于直线\(x=2\)的对称点是\((4-x_0,y_0)\)

故有\(y_0=f(x_0)=f(4-x_0)\),即\(f(x_0)=f(4-x_0)\)

又由于点的任意性可知,函数必然满足\(f(x)=f(4-x)\)。[证毕]

使用方法:

若函数\(f(x)\)满足\(f(x)=f(2-x)\)

则是关于直线\(x=\cfrac{x+(2-x)}{2}=1\) 对称的;

自然若函数\(f(x)\)满足\(f(1-x)=f(1+x)\)

则也是关于直线\(x=\cfrac{(1-x)+(1+x)}{2}=1\) 对称的;

其实表达式\(f(x)=f(2-x)\)\(f(1-x)=f(1+x)\)刻画的是同一回事,

\(1-x\)替换\(f(x)=f(2-x)\)中的\(x\),就能得到\(f(1-x)=f(1+x)\)

用此理论,我们还可以主动刻画函数的对称性,

其一用图像刻画,其二用数学语言表达为\(f(0.5-x)=f(1.5+x)\)

②、函数\(f(x)\)的对称中心是\((1,1)\)的充要条件是函数\(f(x)\)满足\(f(x)+f(2-x)=2\)

充分性:函数\(f(x)\)满足\(f(x)+f(2-x)=2\),取其上任意一点\((x_0,y_0)\)

则必有\(y_0=f(x_0)\)

又由于点\((x_0,y_0)\)关于点\((1,1)\)的对称点为\((2-x_0,2-y_0)\)

\(f(x_0)+f(2-x_0)=2\),得到\(y_0+f(2-x_0)=2\)

\(2-y_0=f(2-x_0)\),说明点\((2-x_0,2-y_0)\)也在函数图像上,

又由于点的任意性可知,函数图像上任意点关于点\((1,1)\)的对称点也在函数图像上;

必要性:函数\(f(x)\)的对称中心为点\((1,1)\)

取其上任意一点\((x_0,y_0)\),其在图像上,则有\(y_0=f(x_0)\)

而其对称点\((2-x_0,2-y_0)\)也在图像上,故有\(2-y_0=f(2-x_0)\)

\(2-f(x_0)=f(2-x_0)\),即\(f(x_0)+f(2-x_0)=2\)

又由于点的任意性可知,函数图像上任意点都满足\(f(x)+f(2-x)=2\);[证毕]

使用方法:

若函数\(f(x)\)满足\(f(x)+f(2-x)=4\),则其关于点成中心对称,

对称中心的坐标\((x_0,y_0)\)这样求解,

\(x_0=\cfrac{x+(2-x)}{2}=1\)\(y_0=\cfrac{f(x)+(2-x)}{2}=2\)

即对称中心为\((1,2)\)

自然若函数\(f(x)\)满足\(f(-x)+f(2+x)=2\),则也是关于点\((1,1)\)对称的,

同理我们也可以这样刻画一个函数关于点\((1,1)\)对称。

我们就说函数满足条件\(f(0.5-x)+f(1.5+x)=2\)或者\(f(3-x)+f(-1+x)=2\)

例1【2017全国卷1文科第9题高考真题】

已知函数\(f(x)=lnx+ln(2-x)\),则【】

A、\(f(x)\)\((0,2)\)单调递增 \(\hspace{0.5cm}\) B、\(f(x)\)\((0,2)\)单调递减 \(\hspace{0.5cm}\)
C、\(y=f(x)\)的图像关于直线\(x=1\)对称 \(\hspace{0.5cm}\) D、\(y=f(x)\)的图像关于点\((1,0)\)对称

分析:由于函数\(f(x)\)是复合函数,定义域要使\(x>0,2-x>0\)

即定义域是\((0,2)\),又\(f(x)=ln[x(2-x)]=ln[-(x-1)^2+1]\)

则由复合函数的单调性法则可知,

\((0,1)\)上单增,在\((1,2)\)上单减,故排除A,B;

对于选项\(C、D\)而言,

若函数\(y=f(x)\)关于点\((1,0)\)对称,则函数\(f(x)\)必然满足关系:\(f(x)+f(2-x)=0\)

若函数\(y=f(x)\)关于直线\(x=1\)对称,则函数\(f(x)\)必然满足关系:\(f(x)=f(2-x)\)

接下来我们用上述的结论来验证,

由于\(f(x)=lnx+ln(2-x)\)\(f(2-x)=ln(2-x)+ln(2-(2-x))=ln(2-x)+lnx\)

即满足\(f(x)=f(2-x)\),故函数\(y=f(x)\)的图像关于直线\(x=1\)对称,选C;

再来验证D,发现\(f(x)+f(2-x)=2[lnx+ln(2-x)]\neq 0\),D选项不满足。

例2已知函数\(f(x)=lg(4x-x^2)\),则【】

A、\(f(x)\)\((0,4)\)上单调递增 \(\hspace{2cm}\) B、\(f(x)\)\((0,4)\)上单调递减 \(\hspace{2cm}\)

C、\(y=f(x)\)的图像关于直线\(x=2\)对称 \(\hspace{2cm}\) D、 \(y=f(x)\)的图像关于点\((2,0)\)对称

分析:令内函数\(g(x)=4x-x^2>0\),得到定义域\((0,4)\)

\(g(x)=-(x-2)^2+4\),故内函数在\((0,2]\)单减,在\([2,4)\)单增,

外函数只有单调递增,故复合函数\(f(x)\)\((0,2]\)单减,在\([2,4)\)单增,

故排除A、B;

要验证C选项,

只需要利用\(y=f(x)\)的图像关于直线\(x=2\)对称的充要条件\(f(x)=f(4-x)\)验证即可,

\(f(4-x)=lg[4(4-x)-(4-x)^2]\)

\(=lg(16-4x-16+8x-x^2)\)

\(=lg(4x-x^2)=f(x)\),故选C。

若要验证D选项,

只需要利用\(y=f(x)\)的图像关于点\((2,0)\)对称的充要条件\(f(x)+f(4-x)=0\)验证即可。

转载于:https://www.cnblogs.com/wanghai0666/p/6691247.html

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值