『CUDA C编程权威指南』第二章编程题选做

第一题

设置线程块中线程数为1024效果优于设置为1023,且提升明显,不过原因未知,以后章节看看能不能回答。

第二题

参考文件sumArraysOnGPUtimer.cu,设置block=256,新建内核,使每个线程处理两个元素。

思路很简单,将数据的虚拟内存对半分为高低两块,每一内核线程同时处理两个索引区域序列相同的数据即可:

# include <cuda_runtime.h>
# include <stdio.h>
# include <sys/time.h>
# include "common.h"

__global__ void sumArraysOnGPU(float *A, float *B, float *C, const int N)
{
    int i = blockIdx.x * blockDim.x + threadIdx.x;

    if (i < N/2) {
    	C[i] = A[i] + B[i];
    	C[i+N/2] = A[i+N/2] + B[i+N/2];
    }
}

int main(int argc, char **argv)
{
    printf("%s Starting...\n", argv[0]);

    // set up device
    int dev = 0;
    cudaDeviceProp deviceProp;
    CHECK(cudaGetDeviceProperties(&deviceProp, dev));
    printf("Using Device %d: %s\n", dev, deviceProp.name);
    CHECK(cudaSetDevice(dev));

    // set up data size of vectors
    int nElem = 1 << 24;
    printf("Vector size %d\n", nElem);

    // malloc host memory
    size_t nBytes = nElem * sizeof(float);

    float *h_A, *h_B, *hostRef, *gpuRef;
    h_A     = (float *)malloc(nBytes);
    h_B     = (float *)malloc(nBytes);
    hostRef = (float *)malloc(nBytes);
    gpuRef  = (float *)malloc(nBytes);

    double iStart, iElaps;

    // initialize data at host side
    iStart = cpuSecond();
    initialData(h_A, nElem);
    initialData(h_B, nElem);
    iElaps = cpuSecond() - iStart;
    printf("initialData Time elapsed %f sec\n", iElaps);
    memset(hostRef, 0, nBytes);
    memset(gpuRef,  0, nBytes);

    // add vector at host side for result checks
    iStart = cpuSecond();
    sumArraysOnHost(h_A, h_B, hostRef, nElem);
    iElaps = cpuSecond() - iStart;
    printf("sumArraysOnHost Time elapsed %f sec\n", iElaps);

    // malloc device global memory
    float *d_A, *d_B, *d_C;
    CHECK(cudaMalloc((float**)&d_A, nBytes));
    CHECK(cudaMalloc((float**)&d_B, nBytes));
    CHECK(cudaMalloc((float**)&d_C, nBytes));

    // transfer data from host to device
    CHECK(cudaMemcpy(d_A, h_A, nBytes, cudaMemcpyHostToDevice));
    CHECK(cudaMemcpy(d_B, h_B, nBytes, cudaMemcpyHostToDevice));
    CHECK(cudaMemcpy(d_C, gpuRef, nBytes, cudaMemcpyHostToDevice));

    // invoke kernel at host side
    int iLen = 512;
    dim3 block (iLen);
    dim3 grid  ((nElem + block.x - 1) / block.x / 2);
    // <<<  16384, 512  >>>  Time elapsed 0.000747 sec 
    // <<<  32768, 512  >>>  Time elapsed  0.000709 sec

    iStart = cpuSecond();
    sumArraysOnGPU<<<grid, block>>>(d_A, d_B, d_C, nElem);
    CHECK(cudaDeviceSynchronize());
    iElaps = cpuSecond() - iStart;
    printf("sumArraysOnGPU <<<  %d, %d  >>>  Time elapsed %f sec\n", grid.x,
           block.x, iElaps);

    // check kernel error
    // CHECK(cudaGetLastError()) ;

    // copy kernel result back to host side
    CHECK(cudaMemcpy(gpuRef, d_C, nBytes, cudaMemcpyDeviceToHost));

    // check device results
    checkResult(hostRef, gpuRef, nElem);

    // free device global memory
    CHECK(cudaFree(d_A));
    CHECK(cudaFree(d_B));
    CHECK(cudaFree(d_C));

    // free host memory
    free(h_A);
    free(h_B);
    free(hostRef);
    free(gpuRef);

    return(0);
}

第四题

参考文件sumMatrixOnGPU-2D-gril-1D-block.cu,新建内核,使每个线程处理两个元素。

思路同上,由于是二维索引,所以采取的划分是按照纵坐标y将数据对半划分,可以直观理解为沿着y/2将数据对折,然后同一个线程处理数据为两个块中对应位置即可:

# include <cuda_runtime.h>
# include <stdio.h>
# include <sys/time.h>
# include "common.h"

// grid 2D block 1D
__global__ void sumMatrixsOnGPUMix(float *MatA, float *MatB, float *MatC, 
	int nx, int ny)
{
    int ix = threadIdx.x + blockIdx.x * blockDim.x;
    int iy = blockIdx.y;
    int idx = iy * nx + ix;

    if (ix < nx && iy < ny/2) {
        MatC[idx] = MatA[idx] + MatB[idx];
    	MatC[idx + nx*ny/2] = MatA[idx + nx*ny/2] + MatB[idx + nx*ny/2];
    }
}

int main(int argc, char **argv){
	printf("%s Startin... \n", argv[0]);

	//set up device
	int dev = 0;
	cudaDeviceProp deviceProp;
	CHECK(cudaGetDeviceProperties(&deviceProp, dev));
	printf("Using Device %d: %s\n", dev, deviceProp.name);
	CHECK(cudaSetDevice(dev));

	// matrix size
	int nx = 1<<13;
	int ny = 1<<5;  // 2**18

	int nxy = nx * ny;
	int nBytes = nxy * sizeof(float);
	printf("Matrix size:nx %d, ny %d\n", nx, ny);

	float *h_A, *h_B, *hostRef, *gpuRef;
	h_A = (float *)malloc(nBytes);
	h_B = (float *)malloc(nBytes);
	hostRef = (float *)malloc(nBytes);
	gpuRef = (float *)malloc(nBytes);

	// initialize data at host side
	double iStart, iElaps;
	iStart = cpuSecond();
	initialData(h_A, nxy);
	initialData(h_B, nxy);
	iElaps = cpuSecond() - iStart;

	memset(hostRef, 0, nBytes);
	memset(gpuRef, 0, nBytes);

	iStart = cpuSecond();
	sumMatrixsOnHost(h_A, h_B, hostRef, nx, ny);
	iElaps = cpuSecond() - iStart;

	// malloc device global memory
	float *d_MatA, *d_MatB, *d_MatC;
	cudaMalloc((float **)&d_MatA, nBytes);
	cudaMalloc((float **)&d_MatB, nBytes);
	cudaMalloc((float **)&d_MatC, nBytes);

	// transfer data from host to device
	cudaMemcpy(d_MatA, h_A, nBytes, cudaMemcpyHostToDevice);
	cudaMemcpy(d_MatB, h_B, nBytes, cudaMemcpyHostToDevice);

	// invoke kernel at host to device
	dim3 block (256);  // 2维块设置
	dim3 grid ((nx+block.x-1)/block.x, ny/2);  // 2维网格设置
	/*
	<<<(1024, 16384), (16, 1)>>> Time elapsed 0.021947sec
	<<<(512, 16384), (32, 1)>>> Time elapsed  0.011039sec
	<<<(64, 16384), (256, 1)>>> Time elapsed  0.009063sec
	*/

	iStart = cpuSecond();
	sumMatrixsOnGPUMix<<<grid, block>>>(d_MatA, d_MatB, d_MatC, nx, ny);
	cudaDeviceSynchronize();  // 测试用,同步线程,实际无需等待子线程
	iElaps = cpuSecond() - iStart;
	printf("sumArraysOnGPU <<<(%d, %d), (%d, %d)>>> Time elapsed %f" \
		   "sec\n", grid.x, grid.y, block.x, block.y, iElaps);

	cudaMemcpy(gpuRef, d_MatC, nBytes, cudaMemcpyDeviceToHost);
	checkResult(hostRef, gpuRef, nxy);

	// free device global memory
	cudaFree(d_MatA);
	cudaFree(d_MatB);
	cudaFree(d_MatC);

	// free host memory
	free(h_A);
	free(h_B);
	free(hostRef);
	free(gpuRef);

	// reset device
	cudaDeviceReset();

	return 0;
}

运行结果如下:

附common.h文件

# include <cuda_runtime.h>
# include <stdio.h>
# include <sys/time.h>
# define CHECK(call)                                                           \
{                                                                              \
    const cudaError_t error = call;                                            \
    if (error != cudaSuccess)                                                  \
    {                                                                          \
        fprintf(stderr, "Error: %s:%d, ", __FILE__, __LINE__);                 \
        fprintf(stderr, "code: %d, reason: %s\n", error,                       \
                cudaGetErrorString(error));                                    \
        exit(1);                                                               \
    }                                                                          \
}

void initialData(float *ip, int size)
{
	time_t t;
	srand((unsigned int) time(&t));

	for (int i=0; i<size; i++)
	{
		ip[i] = (float)(rand() & 0xFF)/10.0f;
	}
}

double cpuSecond() {
	struct timeval tp;
	gettimeofday(&tp, NULL);
	return ((double)tp.tv_sec + (double)tp.tv_usec*1.e-6);
}

void checkResult(float *hostRef, float *gpuRef, const int N) {
	double epsilon = 1.0E-8;
	bool match = 1;
	for (int i=0; i<N; i++) {
		if (abs(hostRef[i] - gpuRef[i]) > epsilon) {
			match = 0;
			printf("Arrays do not match!\n");
			printf("host %5.2f gpu %5.2f at current %d\n", 
				hostRef[i], gpuRef[i], i);
			break;
		}
	}
	if (match) printf("Arrays match.\n\n");
}

void sumArraysOnHost(float *A, float *B, float *C, const int N) {
	for (int idx=0; idx<N; idx++) 
		C[idx] = A[idx] + B[idx];
}

void sumMatrixsOnHost(float *A, float *B, float *C, const int nx, const int ny){
	float *ia = A;
	float *ib = B;
	float *ic = C;
	for (int iy=0; iy<ny; iy++){
		for (int ix=0; ix<nx; ix++){
			ic[ix] = ia[ix] + ib[ix];
		}
		ia += nx;
		ib += nx;
		ic += nx;
	}
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值