1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
|
%--brain mask with the brain tissue
mask_name =
'C:\Users\Administrator\Desktop\workspace\preprocessed\masks\within_brain_mask.nii'
;
M = load_untouch_nii( mask_name ); % load mask NIFTI
mask =
double
(M.img>
0
); % get 3d v
%--brain functional 4d data
data_4d =
'C:\Users\Administrator\Desktop\workspace\preprocessed\4d\func_3d.nii'
;
% data_4d =
'C:\Users\Administrator\Desktop\phycaa_workspace\phycaa_plus_2104_03_27\_PHYCAA_step1+2.nii'
;
V = load_untouch_nii( data_4d );
%--transform 4d array to 2d array, using brain_mask
within_brain_voxels = nifti_to_mat(V,M);
nt_matrix = within_brain_voxels;
n = size(nt_matrix,
1
);
t = size(nt_matrix,
2
);
mean_value = mean ( mean(nt_matrix,
2
) );
tmp_matrix = nt_matrix - mean_value;
mean_value2 = mean(tmp_matrix,
2
) ;
% normalise_data = abs(( nt_matrix - repmat( mean_value,
1
, t )) ./ repmat( mean_value,
1
, t )) ;
normalise_data = abs(( tmp_matrix - repmat( mean_value2,
1
, t )) ./ repmat( mean_value2,
1
, t )) ;
% normalise_data = abs(( nt_matrix - mean_value) )/ mean_value ;
w_data = normalise_data;
for
i=
1
:n
tmp_rows = normalise_data(i,:);
max_value = max(tmp_rows);
tmp_rows_index = (tmp_rows == max_value);
tmp_rows1 = tmp_rows.*
double
(tmp_rows_index);
% w_data(i,:) =
double
(tmp_rows_index);
w_data(i,:) = tmp_rows1;
end
reference_waveform = sum(w_data);
plot(reference_waveform);
|
本文转自二郎三郎博客园博客,原文链接:http://www.cnblogs.com/haore147/p/3797810.html,如需转载请自行联系原作者