【迁移学习】TCA小结

TCA(Transfer Componet Analysis)是一种边缘分布自适应方法,属于迁移学习中数据分布自适应的一种经典方法。由香港科技大学Q Yang教授及其团队于2011年提出。下面对相关问题和方法进行总结。

问题描述

在我们构建机器学习模型时,训练数据Xs的分布P(Xs)于 测试数据(或者是实际应用数据)Xt的分布P(Xt)并不一致。这会导致我们训练出的模型的鲁棒性变差,并且在测试中可能很难有一个好结果。在本文中,我们将Xs所在的数据域称为源域(surce domain)Xt所在的数据域称为目标域(target domain)。
在这里插入图片描述

解决办法

maximum mean discrepancy:

为了解决这个问题,我们想要学习一种映射,使
在这里插入图片描述
这样二者的条件分布也会近似
在这里插入图片描述
这里就有一个问题,如何衡量两个域的分布的距离?只有有可量化的距离我们才能衡量并且构造函数使源域和目标

评论 19
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值