线性规划习题

一、基础训练

例1已知\(x,y\)满足约束条件\(\begin{cases}x+y-2\leq 0\\x-2y-2\leq 0\\2x-y+2\ge 0\end{cases}\),求解:

(1)\(z=-\cfrac{1}{4}x+y\)的最大值和最小值。

分析:将所给的目标函数改写成\(l:y=\cfrac{1}{4}x+z\),则可以看到\(z\)的几何意义是直线\(l\)的纵截距,则直线\(l\)沿\(y\)轴向上平移,则\(z\)增大;直线\(l\)沿\(y\)轴向下平移,则\(z\)减小;故直线经过点\(A(2,0)\)时,\(z_{max}=-\cfrac{1}{4}\times2+0=-\cfrac{1}{2}\);直线经过点\(B(-2,-2)\)时,\(z_{min}=-\cfrac{1}{4}\times(-2)+(-2)=-\cfrac{3}{2}\)

992978-20170907161426210-1851407669.gif

(2)求\(z=-\cfrac{1}{4}x-y\)的最大值和最小值。

分析:将所给的目标函数改写成\(l:y=-\cfrac{1}{4}x-z\),则可以看到\(-z\)的几何意义是直线\(l\)的纵截距,则直线\(l\)沿\(y\)轴向上平移,则\(-z\)增大,则\(z\)减小;直线\(l\)沿\(y\)轴向下平移,则\(-z\)减小,则\(z\)增大;故直线经过点\(A(2,0)\)时,\(z_{min}=-\cfrac{1}{4}\times2-0=-\cfrac{1}{2}\);直线经过点\(B(-2,-2)\)时,\(z_{max}=-\cfrac{1}{4}\times(-2)-(-2)=\cfrac{3}{2}\)

二、典例剖析

例2已知约束条件\(\left\{\begin{array}{1}{x-3y+4\leq 0}\\ {x+2y-1 \ge 0 }\\ {3x+y-8\leq 0} \end {array}\right.\),若目标函数\(z=x+ay(a \ge 0)\)恰好在点\((2,2)\)处取到最大值,求\(a\)的取值范围。

提示:法1,线性规划法;法2:分离参数法。

例3已知\(a>0\)\(x,y\)满足约束\(\begin {cases} &x \ge 1 \\ &x+y \leq 3 \\ & y\ge a(x-3) \end {cases}\), 若\(z=3x+2y\)的最小值为1,则\(a\)的值为__________.

例4【2016陕西省一检理科数学第11题】

\(k>1\),在约束条件\(\begin{cases} &y\ge x \\ &y\leq kx \\ &x+y\leq 1\end{cases}\)下,目标函数\(z=x+ky\)的最大值小于2,则\(k\)的取值范围是多少?

课件地址

分析:自行补图,由图像可知目标函数\(y=-\cfrac{1}{k}x+\cfrac{z}{k}\)的最优解是直线\(y=kx\)\(x+y=1\)的交点\((\cfrac{1}{k+1},\cfrac{k}{k+1})\)

代入得到\(z_{max}=\cfrac{1}{k+1}+\cfrac{k^2}{k+1}<2\),化简得到\(k^2-2k+1<2\),又\(k>1\),故\(k\in (1,1+\sqrt{2})\).

例4若目标函数\(z=kx+2y\)在约束条件\(\begin{cases} &2x-y\leq 1 \\ &x+y \ge 2 \\ &y-x \leq 2\end{cases}\)下仅在点\((1,1)\)处取到最小值,则实数\(k\)的取值范围是多少

课件地址

分析:有图可知,仅在点\((1,1)\)处取到最小值,只需目标函数\(y=-\cfrac{k}{2}x+\cfrac{z}{2}\)的斜率满足条件\(-1<-\cfrac{k}{2}<2\)即可,解得\(k\in(-4,2)\)

引申:若题目变为:点\((1,1)\)处取到最小值或取到最小值的最优解不唯一,可得到\(k\in [-4,2]\)

例5已知函数\(f(x)=\begin{cases} (\cfrac{1}{2})^x,&x<0 \\ x-2,&x\ge 0 \end{cases}\),若\(f[f(-2)]=a\),实数\(x,y\)满足约束条件\(\begin{cases} & x-a \ge 0 \\ & x+y\leq 6 \\ & 2x-y\leq 6\end{cases}\),则目标函数\(z=\cfrac{3x+4y+10}{x+2}\)的最大值是_________.

分析:先求得\(a=2\),再代入做出可行域如图,课件地址

由可行域可以看出\(k=\cfrac{y+1}{x+2}\in [-\cfrac{1}{4},\cfrac{5}{4}]\),再将目标函数变形\(z=\cfrac{3x+4y+10}{x+2}=\cfrac{3(x+2)+4y+4}{x+2}=3+4\times\cfrac{y+1}{x+2}\),从而可以计算出\(z\in [2,8]\).

例6若\(z=f(x,y)\)称为二元函数,已知\(f(x,y)=ax+by\)\(\begin{cases} &f(1,-2)-5 \leq 0 \\ &f(1,1)-4\leq 0 \\ &f(3,1)-10 \ge0\end{cases}\) ,则\(z=f(-1,1)\)的最大值等于( )

分析:由题目已知,能很快转化为在线性约束条件\(\begin{cases} &a-2b-5 \leq 0 \\ &a+b-4\leq 0 \\ &3a+b-10 \ge 0\end{cases}\)下,求目标函数\(z=f(-1,1)=-a+b\)的最大值问题。 余下解答略。

例7(2016全国第三次大联考第12题)

设P是不等式组\(\begin{cases}x\ge 0\\y\ge 0\\x+3y\leq 1\end{cases}\)表示的平面区域内的任意一点,向量\(\vec{m}=(-1,1)\)\(\vec{n}=(2,-1)\),若\(\overrightarrow{OP}=\lambda\vec{m}+\mu\vec{n}\),则\(\cfrac{\mu}{\lambda+1}\)的取值范围是多少?

992978-20170928220040590-607906064.png
分析:由\(\overrightarrow{OP}=(x,y)=(-\lambda+2\mu,\lambda-\mu)\)

则有\(x=-\lambda+2\mu,y=\lambda-\mu\)代入已知的线性约束条件,

得到\(\begin{cases}-\lambda+2\mu\ge 0\\\lambda-\mu\ge 0\\-\lambda+2\mu+3(\lambda-\mu)\leq 1\end{cases}\),求\(\cfrac{\mu}{\lambda+1}\)的取值范围,

即相当于已知\(\begin{cases}x-2y\leq 0\\x-y\ge 0 \\ 2x-y\leq1\end{cases}\),求\(k=\cfrac{y-0}{x-(-1)}\)的取值范围,

如右图所示,故\(k_{min}=k_{BO}=0\)\(k_{max}=k_{BA}=\cfrac{1-0}{1+1}=\cfrac{1}{2}\)

\(\cfrac{\mu}{\lambda+1}\)的取值范围为\([0,\cfrac{1}{2}]\)

例8【向量的投影的几何意义】【2018西安八校联考第5题】

已知\(O\)是坐标原点,点\(A(2,1)\),点\(M(x,y)\)是平面区域\(\begin{cases}&y\leq x\\&x+y\leq 1\\&y\ge -1\end{cases}\)内的一个动点,则\(\overrightarrow{OA}\cdot \overrightarrow{OM}\)的最大值是多少?

法1:利用向量的坐标运算得到,\(\overrightarrow{OA}\cdot \overrightarrow{OM}=2x+y\),故转化为求\(2x+y\)的最大值,即求\(z=2x+y\)的最大值,用线性规划的常规方法解决即可。

法2:利用向量的投影的几何意义求解,说明:点\(M\)是三角形区域内部及边界上的一个动点,动画只做了点\(M\)在边界上的情形;

注:图中有向线段\(OB\)是向量\(\overrightarrow{OM}\)在向量\(\overrightarrow{OA}\)方向上的投影,它是可正,可负,可零的;

\(\overrightarrow{OA}\cdot \overrightarrow{OM}=|\overrightarrow{OA}|\cdot |\overrightarrow{OM}|\cdot cos\theta\),其中\(|\overrightarrow{OA}|\)是个定值,

故只需要求\(|\overrightarrow{OM}|\cdot cos\theta\)的最大值,而\(|\overrightarrow{OM}|\cdot cos\theta\)的几何意义是\(\overrightarrow{OM}\)\(\overrightarrow{OA}\)方向上的投影,

由图形可知,当点\(M(x,y)\)位于点\((2,-1)\)时投影\(|\overrightarrow{OM}|\cdot cos\theta\)最大,故将点\((2,-1)\)代入\(\overrightarrow{OA}\cdot \overrightarrow{OM}=3\)

992978-20190605103106532-2049663806.gif

变式题1:求\(\overrightarrow{OA}\cdot \overrightarrow{OM}\)的最小值是多少?

分析:由上图可以看出,当两个向量的夹角为钝角时,其投影是负值,故当点\(M\)位于点\(C\)时,其内积最小,

此时将点\((-1,-1)\)代入得到\(\overrightarrow{OA}\cdot \overrightarrow{OM}=-3\)

变式题2:求向量\(\overrightarrow{OM}\)的投影的绝对值最小时的动点\(M\)的轨迹方程?

分析:当其夹角为\(90^{\circ}\)时,有向线段\(OB=0\),故向量\(\overrightarrow{OM}\)的投影的绝对值最小\(0\)

此时,点\(M\)在三角形区域内部且和直线\(OA\)垂直,故其轨迹为\(y=-2x,(-1\leqslant y\leqslant 0)\)

例9函数\(y=x^3+3ax^2+3bx\)在区间\([-1,1]\)单调减少,且\(a>0\),则\(2a+b\)的最大值为________.

【分析】先由函数单调递减转化为恒成立,再转化为线性规划问题求解。

992978-20180809110252451-1313800668.png%20%20

【解答】

由函数\(y=x^3+3ax^2+3bx\)在区间\([-1,1]\)单调减少,

可得\(f'(x)=3x^2+6ax+3b\leq 0\)\([-1,1]\)上恒成立,

\(\left\{\begin{array}{l}{f'(-1)\leq 0}\\{f'(1)\leq 0}\end{array}\right.\)

\(\left\{\begin{array}{l}{3-6a+3b\leq 0}\\{3+6a+3b\leq 0}\end{array}\right.\)

\(a>0\),得到

\(\left\{\begin{array}{l}{2a-b-1\ge 0}\\{2a+b+1\leq 0}\\{a>0}\end{array}\right.\)

做出可行域如右图,由图可知,当直线\(z=2a+b\),即\(b=-2a+z\)平移和直线\(2a+b+1= 0\)平行时,

\(2a+b\)取到最大值,最大值为\(-1\)

本题容易受\(a>0\)的影响,即点\((0,-1)\)不在可行域内,

但可以在直线\(2a+b+1=0\)上另外取一点代入求值。

【点评】当利用恒成立转化为线性规划问题后,题目的难度就降低了。同时提醒注意由恒成立命题向二次不等式组转化的这一数学模型,希望大家能理解记忆,以后碰到就可以直接应用。

例10已知实数\(a、b\)满足条件\(\left\{\begin{array}{l}{a+b-2\ge 0}\\{b-a-1\leq 0}\\{a\leq 1}\end{array}\right.\),求\(\cfrac{a+2b}{2a+b}\)的取值范围。

【法1】转化为斜率型,

思路如下:由于所求值函数为分式形式的关于\(a、b\)的一次齐次式,

故可以转化为\(\cfrac{a+2b}{2a+b}=\cfrac{1+2\cdot \cfrac{b}{a}}{2+\cfrac{b}{a}}\)

\(=2-\cfrac{3}{2+k}=f(k)\),其中\(k=\cfrac{b}{a}\)

这样先由可行域求得\(k=\cfrac{b}{a}\in [1,3]\)

函数\(f(k)\)在区间\([1,3]\)上单调递增,

然后用单调性,求得\(\cfrac{a+2b}{2a+b}\in [1,\cfrac{7}{5}]\)

【法2】换元法,令\(a+2b=n\)\(2a+b=m\)

联立解以\(a、b\)为元的方程组,得到

\(a=\cfrac{2m-n}{3}\)\(b=\cfrac{2n-m}{3}\)

代入原不等式组,可将原约束条件转化为关于\(m 、n\)的不等式组,

即已知\(m 、n\)满足条件\(\left\{\begin{array}{l}{m+n-6\ge 0}\\{n-m-1\leq 0}\\{2m-n-3\leq 0}\end{array}\right.\)

\(\cfrac{n}{m}\)的取值范围。

利用数形结合思想可得,\(\cfrac{a+2b}{2a+b}=\cfrac{n}{m}\in [1,\cfrac{7}{5}]\)图像

例11已知实数\(x\)\(y\)满足\(\left\{\begin{array}{l}{x^2+y^2\leq 9}\\{x\ge 1}\\{y\ge 1}\end{array}\right.\),则\(\cfrac{y}{x-5}\)的取值范围是____________。

分析:如图所示,从数上理解\(\cfrac{y}{x-5}=\cfrac{y-0}{x-5}\),从形上理解,应该是定点\(A(5,0)\)和动点\(P(x,y)\)的连线的斜率的取值范围;

故当\(k_{AP}\)最大时,点\(P\)坐标应该为\((1,1)\),此时\(k_{max}=-\cfrac{1}{4}\)

\(k_{AP}\)最小时,点\(P\)位于直线\(y=k(x-5)\)和函数\(y=\sqrt{9-x^2}\)相切的切点\(Q\)处,以下重点求切点\(Q(x_0,y_0)\)的坐标;

法1:连结\(OQ\),可知\(|OQ|=3\)\(|AQ|=4\),利用等面积法,可知\(y_0=\cfrac{12}{5}\),代入函数\(y=\sqrt{9-x^2}\)求得\(x_0=\cfrac{9}{5}\),故\(k_{min}=k_{AQ}=-\cfrac{3}{4}\)

故所求范围是\([-\cfrac{3}{4},-\cfrac{1}{4}]\)

法2:利用导数求切点\(Q(x_0,y_0)\)的坐标;

由于\(y=g(x)=\sqrt{9-x^2}\),则\(g'(x)=\cfrac{1}{2}\cdot (9-x^2)^{-\cfrac{1}{2}}\cdot (-2x)=\cfrac{-x}{\sqrt{9-x^2}}\)

\(k=\cfrac{-x_0}{\sqrt{9-x_0^2}}\)①,\(y_0=k(x_0-5)\)②,\(y_0=\sqrt{9-x_0^2}\)③,联立①②③,解得\(x_0=\cfrac{9}{5}\)

代入函数\(y=\sqrt{9-x^2}\),求得\(y_0=\cfrac{12}{5}\),故\(k_{min}=k_{AQ}=-\cfrac{3}{4}\)

故所求范围是\([-\cfrac{3}{4},-\cfrac{1}{4}]\)

例13【2019届高三理科数学二轮用题】已知不等式组\(\left\{\begin{array}{l}{2x-y\ge 0}\\{2-2y\leq 0}\\{x\leq 2}\end{array}\right.\)所表示的区域为\(\Omega\),则区域\(\Omega\)的外接圆的面积为__________.

分析:做出如图所示的三角形可行域,三条边长可知,故求其外接圆的半径可以采用\(S_{\triangle OAB}=\cfrac{abc}{4R}\)

992978-20190427115816897-1754175618.jpg

又由于\(S_{\triangle OAB}=\cfrac{1}{2}\times 3\times 2=3\),则\(3=\cfrac{3\times \sqrt{5}\times 2\sqrt{5}}{4R}\),解得\(R=\cfrac{5}{2}\),故\(S_{外接圆}=\cfrac{25\pi}{4}\)

解后反思:结合题目的具体条件,选择恰当的公式,计算量能相应的减少。

例14【2019届高三理科数学三轮用题】

例15【2019届高三理科数学第三轮模拟训练题】实数\(x\)\(y\)满足\(\left\{\begin{array}{l}{y\leqslant 2x+2}\\{x+y-2\geqslant 0}\\{x\leqslant 2}\end{array}\right.\),则\(z=|x-y|\)的最大值为【】

$A.2$ $B.4$ $C.2\sqrt{2}$ $D.8$

分析:先用常规方法求得\(m=x-y\)的取值范围,可得\(m\in [-4,2]\),则\(z=|m|\in [0,4]\),故选\(B\)

转载于:https://www.cnblogs.com/wanghai0666/p/9608814.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值