(1-cosx)/(x^2)从负无穷到正无穷的积分怎么求?

(1-cosx)/(x^2)从负无穷到正无穷的积分怎么求?

这道题需要先进行简单地变形,然后利用帕塞瓦尔定理,再计算结果。

1.简单变形:

原式=2\int_{-\infty }^{\infty} \frac{sin^{2}\frac{x}{2} }{x^{2}} dx

x=2t,有

……=\int_{-\infty }^{\infty} \frac{sin^{2}t }{t^{2}} dt=\int_{-\infty }^{\infty} (\frac{sint }{t})^{2} dt=\int_{-\infty }^{\infty} Sa^{2}(t) dt;

2.帕塞瓦尔等式

\int_{-\infty}^{\infty} f^{2}(t)dt=\frac{1}{2\pi } \int_{-\infty}^{\infty} \left| F(j\omega ) \right|^{2} d\omega

Sa(t)\leftrightarrow \pi g_{2}(\omega )

故原式=\frac{\pi }{2} \int_{-\infty}^{\infty} g_{2}^{2}(\omega )d\omega.

3.计算结果

g_{2}(\omega )\left| \omega  \right| <1时有非零值1,则易知原式=\pi

转载于:https://my.oschina.net/u/658658/blog/466359

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值