椭圆型变分问题理论及数值方法

本文深入探讨椭圆型变分问题,从椭圆型方程到变分不等式,详细阐述了简单情况、障碍问题和非齐次Neumann问题的理论与数值解法。通过Lax-Milgram引理证明了解的存在性和唯一性,并介绍了第一类和第二类变分不等式。
摘要由CSDN通过智能技术生成

椭圆型变分问题理论及数值方法

张少杰 浙江大学数学科学学院

目录

[TOC]

1.前言

​ 变分不等式是一类重要的非线性问题,一些复杂的物理过程可以用变分不等式在描述. 本文主要基于《Theoretical Numerical Analysis》${}^{[1]}$的第11章. 同时参考$[2],[3]$整理而成.

​ 对于椭圆型偏微分方程,往往使用有限元方法计算其数值解. 正如冯康院士首次发现有限元方法时称之为基于变分原理的差分方法,研究椭圆型变分不等式(elliptic variational inequalities, EVIs)至关重要. 椭圆型变分不等式根据其物理学背景,往往具有较好的性质. 因此可以研究其解的存在性,唯一性,稳定性等.

2.由椭圆型方程到变分不等式

​ 椭圆型偏微分方程和变分不等式存在广泛的联系. 对于实际的物理问题,则又会与能量泛函的极小化等价.

2.1简单情况

​ 考虑最经典的椭圆型偏微分方程,即Poisson方程

$$ \begin{equation} \left\{ \begin{aligned} -\Delta u = f, &\qquad \mathrm{in}\;\Omega, \\ u=0,&\qquad \mathrm{on}\;\Gamma, \end{aligned} \right. \end{equation} $$

其中$\Omega\subset \R^d$. 给定测试函数空间为$H^1_0(\Omega)$,有下面的弱形式

$$ u\in H_0^1(\Omega)\qquad \int_\Omega\nabla u\cdot\nabla v \;dx = \int_\Omega fv dx,\qquad\forall v\in H^1_0(\Omega). $$

由Lax-Margin引理,可得问题$(2)$有唯一解. 进一步还可以得到问题$(2)$等价于极小化问题

$$ u\in H_0^1(\Omega),\qquad E(u)=\inf_{v\in H^1_0(\Omega)} E(v) $$

其中

$$ E(v) = \int_\Omega \left( \frac12|\nabla v|^2-fv \right)dx. $$

这是因为

$$ \begin{aligned} E'(u)v = \lim_{t\to0}\frac{E(u+tv)-E(u)}t=\int_{\Omega}(\nabla u\cdot\nabla v-fv)dx. \end{aligned} $$

这说明$E$在$u$处取到泛函的极值. 又有

$$ \begin{aligned} E''(u)(v,w) = \lim_{t\to0}\frac{\int_\Omega[\nabla(u+tw)\nabla v-fv]dx- \int_\Omega[\nabla u\nabla v-fv]dx}{t} = \int_\Omega\nabla v\cdot\nabla w\;dx \end{aligned} $$

根据$\displaystyle \int_\Omega (\nabla v)^2\;dx>0$,及$E(u+tv)=E(u)+\frac12t^2\displaystyle \int_\Omega (\nabla v)^2\;dx$,可知$E$在$u$处取到的最小值.

2.2障碍问题

​ 障碍问题描述的是一张弹性膜,在区域$\Omega$上收到力$f$,且膜沿边界$\Gamma$是固定的(可令$u=0 \;\mathrm{on}\;\Gamma$),障碍函数为$\psi$.

​ 由力学中的能力最小原理可知,位移$u$是能量最小时膜的位置,能力泛函$E$由等式$(4)$给定. 故障碍问题可以表述为

$$ \begin{equation} \left\{

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值