泛函分析笔记(十六) 二次极小化问题、Lax-Milgram引理

1. 二次极小化问题

(在函数空间中更多的是用 u , v ∈ V u,v\in V u,vV 而不是 x , y ∈ X x,y\in X x,yX ,我也不知道为什么)

  • ( V , ∣ ∣ ⋅ ∣ ∣ ) (V,||\cdot||) (V,) 是Banach空集, a : V × V → R a:V\times V\to\mathbb{R} a:V×VR 是对称的连续双线性形式,则有
    ∃ α 使 得 α > 0 , α ( u , v ) ≥ α ∣ ∣ v ∣ ∣ 2 , v ∈ V \exists \alpha 使得 \alpha>0 , \alpha(u,v)\ge \alpha||v||^2,v\in V α使α>0,α(u,v)αv2,vV

  • l : V → R l:V\to \mathbb{R} l:VR 是连续线性形式,而泛函 J : V → R J:V\to\mathbb{R} J:VR J ( v ) : = 1 2 a ( v , v ) − l ( v ) J(v):=\frac{1}{2}a(v,v)-l(v) J(v):=21a(v,v)l(v)

  • 设U是V的子集

则存在唯一的元素u使得
u ∈ U , J ( u ) = i n f v ∈ U J ( v ) u\in U,J(u) = inf_{v\in U}J(v) uU,J(u)=infvUJ(v)

这样的映射是Lipschitz连续的,当且仅当U是V的子空间时它是线性的。

这里的这个 J J J 就是一个二次泛函,定理说的自然就是在满足条件的情况下,这个二次泛函的下界是存在的。

强制: 设V是一个赋范向量空间,其中范数为 ∣ ∣ ⋅ ∣ ∣ ||\cdot|| ,一个双线性形式 a : V × V → R a:V\times V \to \mathbb{R} a:V×VR 如果存在常数α使得 α > 0 且 a ( v , v ) ≥ α ∣ ∣ v ∣ ∣ 2 , ∀ v ∈ V \alpha >0 且 a(v,v)\ge \alpha ||v||^2,\forall v\in V α>0a(v,v)αv2,vV 则称V是强制的😂。

也就是说,能找到这么一个数让他的范数的平方比 a(v,v) 小。

V强制的双线性形式也经常称为V椭圆的。

二次极小化问题: 探讨是否存在一个元素使得二次泛函 J : V → R J:V\to\mathbb{R} J:VR 在V的一个非空子集U上达到极小。

仍然有假设

  • ( V , ∣ ∣ ⋅ ∣ ∣ ) (V,||\cdot||) (V,) 是Banach空集, a : V × V → R a:V\times V\to\mathbb{R} a:V×VR 是对称的连续双线性形式,则有
    ∃ α 使 得 α > 0 , α ( u , v ) ≥ α ∣ ∣ v ∣ ∣ 2 , v ∈ V \exists \alpha 使得 \alpha>0 , \alpha(u,v)\ge \alpha||v||^2,v\in V α使α>0,α(u,v)αv2,vV

  • l : V → R l:V\to \mathbb{R} l:VR 是连续线性形式,而泛函 J : V → R J:V\to\mathbb{R} J:VR J ( v ) : = 1 2 a ( v , v ) − l ( v ) J(v):=\frac{1}{2}a(v,v)-l(v) J(v):=21a(v,v)l(v)

  • 设U是V的子集

一个元素 u ∈ U u\in U uU 是定理中的极小化问题的解的充要条件是它满足
a ( u , v − u ) ≥ l ( v − u ) , ∀ v ∈ U a(u,v-u)\ge l(v-u),\forall v\in U a(u,vu)l(vu),vU
如果U是V上的闭子空间,则为
a ( u , v ) = l ( v ) , ∀ v ∈ U a(u,v) = l(v),\forall v\in U a(u,v)=l(v),vU

证明
(疯狂使用投影定理)
c ∈ V c\in V cV 使得 l ( v ) = a ( c , v ) , ∀ v ∈ X l(v)=a(c,v),\forall v\in X l(v)=a(c,v),vX ,由投影定理由 u ∈ U u\in U uU 是c到U上的投影的充要条件是 a ( u − c , v − u ) ≥ 0 , ∀ v ∈ U a(u-c,v-u)\ge 0,\forall v\in U a(uc,vu)0,vU

该不等式等价为 a ( u , v − u ) ≥ a ( c , v − u ) = l ( v , u ) , ∀ v ∈ U a(u,v-u)\ge a(c,v-u) = l(v,u),\forall v\in U a(u,vu)a(c,vu)=l(v,u),vU (由线性关系可得)
就是刚才题目里面的那个不等式。

如果U是V的子空间的话,由投影定理断定 u ∈ U u\in U uU 是c到U上的投影的充要条件是 a ( u − c , v ) = 0 , ∀ v ∈ U a(u-c,v) = 0,\forall v\in U a(uc,v)=0,vU
(就是u-c和平面U正交嘛)
所以
a ( u , v ) = l ( v ) , ∀ v ∈ U a(u,v) = l(v),\forall v\in U a(u,v)=l(v),vU

2. Lax-Milgram 引理

给定向量空间V的一个非空子集 U,一个双线性形式 a ( ⋅ , ⋅ ) : V × V → R a(\cdot,\cdot):V\times V\to \mathbb{ R} a(,):V×VR 以及一共线性形式 l l l

一个抽象变分问题:


在一般情况下,求一个元素 u ∈ U u\in U uU 使得

a ( u , v − u ) ≥ l ( v − u ) , ∀ v ∈ U a(u,v-u)\ge l(v-u),\forall v\in U a(u,vu)l(vu),vU

如果U是一个子空间,则求一个元素 u ∈ U u\in U uU 使得

a ( u , v ) = l ( v ) , ∀ v ∈ V a(u,v)= l(v),\forall v\in V a(u,v)=l(v),vV


由刚才二次极小化问题可知,如果

  • 空集V完备
  • V的子集U是闭凸
  • 线性形式l是连续的
  • 双线性形式是V强制、连续、对称的

那么这些问题都均有且只有一个解。

(其实如果把双线性形式的对称性去掉,V是Hilbert空集,这种抽象变分仍然只有一个解。)

2.1. Lax-Milgram 引理:

设V是Hilbert空集, a ( ⋅ , ⋅ ) : V × V → R a(\cdot,\cdot):V\times V \to \mathbb{R} a(,):V×VR 是连续且V强制的双线性形式,而 l : V → R l:V\to\mathbb{R} l:VR 是连续线性形式。

抽象变分问题:


求一个元素 u ∈ V u\in V uV 使得

a ( u , v ) = l ( v ) , ∀ v ∈ V a(u,v)=l(v),\forall v\in V a(u,v)=l(v),vV


有且只有一个解,且由此定义的映射 l ∈ V ′ → u ∈ V l\in V'\to u\in V lVuV 是线性连续的。

  • 证明:
    ( ⋅ , ⋅ ) (\cdot,\cdot) (,) ∣ ∣ ⋅ ∣ ∣ ||\cdot|| 表示空间V中的内积和范数,而M为常数使得

∣ a ( u , v ) ∣ ≤ M ∣ ∣ u ∣ ∣   ∣ ∣ v ∣ ∣ , ∀ u , v ∈ V |a(u,v)|\le M||u||~||v||,\forall u,v\in V a(u,v)Mu v,u,vV

也就是说,对每一个u,线性形式 v ∈ V → a ( u , v ) ∈ R v\in V\to a(u,v) \in \mathbb{R} vVa(u,v)R 都是连续的,因此对每个 u ∈ V u\in V uV ,都有唯一的元素 A u ∈ V ′ Au\in V' AuV 使得

a ( u , v ) = A u ( v ) , ∀ v ∈ V a(u,v) = Au(v),\forall v\in V a(u,v)=Au(v),vV

因此可以定义线性映射 A : V → V ′ A:V\to V' A:VV ,其是线性的。
由于

∣ ∣ A u ∣ ∣ V ′ = s u p v ≠ 0 ∣ A u ( v ) ∣ ∣ ∣ v ∣ ∣ = s u p v ≠ 0 ∣ a ( u , v ) ∣ ∣ v ∣ ∣ ≤ M ∣ ∣ u ∣ ∣ , ∀ u ∈ V ||Au||_{V'} = sup_{v\not ={0}} \frac{|Au(v)|}{||v||} = sup_{v\not ={0}}\frac{|a(u,v)}{||v||}\le M||u||,\forall u\in V AuV=supv=0vAu(v)=supv=0va(u,v)Mu,uV

因此A是连续的,有 ∣ ∣ A ∣ ∣ L ( V ; V ′ ) ≤ M ||A||_{\mathcal{L}(V;V')}\le M AL(V;V)M

抽象变分问题等价于解方程

V ′ 中 : A u = l V' 中:Au = l VAu=l

或者等价的有

V 中 : τ ( A u − l ) = 0 V中: \tau(Au-l)=0 Vτ(Aul)=0

这里的 τ : V ′ → V \tau:V'\to V τ:VV 为F.Riesz 映射。

可以证明,对适当的值 ρ > 0 \rho > 0 ρ>0 ,仿射映射 f p : v ∈ V → v − ρ τ ( A v − l ) ∈ V f_p:v\in V\to v - \rho \tau (Av-l)\in V fp:vVvρτ(Avl)V 是压缩的。(证明过程略过了,可以求得允许的 ρ \rho ρ 范围是 ( 0 , 2 α M 2 ) (0,\frac{2\alpha}{M^2}) (0,M22α))

然后由Banach不动点定理可得 f p f_p fp 有唯一不动点 u ∈ V u\in V uV ,满足 τ ( A u − l ) = 0 \tau(Au-l) = 0 τ(Aul)=0

  • 补充:F.Riesz 表示定理
    ( X , ( ⋅ , ⋅ ) ) (X,(\cdot,\cdot)) (X,(,)) K = R \mathbb{K=R} K=R K = C \mathbb{K=C} K=C 上的Hilbert空间,对任意给定的连续线性泛函 l ∈ X ∗ l\in X^* lX 存在唯一的向量 y l ∈ X y_l\in X ylX 使得对所有的 x ∈ X x\in X xX

l ( x ) = ( x , y l ) l(x) = (x,y_l) l(x)=(x,yl)

而且

∣ ∣ l ∣ ∣ X ′ = ∣ ∣ y l ∣ ∣ X ||l||_X'=||y_l||_X lX=ylX

由此定义的 F.Riesz 等距算子 σ : l ∈ X ′ → σ ( l ) = y l ∈ X \sigma: l\in X' \to \sigma (l) = y_l\in X σ:lXσ(l)=ylX 是一个双射,当 K = R \mathbb{K=R} K=R 时,它是线性的,当 K = C \mathbb{K=C} K=C 时,它是半线性的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

豆沙粽子好吃嘛!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值