python es 数据库 复合查询bool_Python-ElasticSearch搜索查询的讲解

Python-ElasticSearch搜索查询的讲解

来源:中文源码网    浏览: 次    日期:2019年11月5日

【下载文档:  Python-ElasticSearch搜索查询的讲解.txt 】

(友情提示:右键点上行txt文档名->目标另存为)

Python-ElasticSearch搜索查询的讲解Elasticsearch 是一个开源的搜索引擎,建立在一个全文搜索引擎库 Apache Lucene™ 基础之上。 Lucene 可能是目前存在的,不论开源还是私有的,拥有最先进,高性能和全功能搜索引擎功能的库。但是 Lucene 仅仅只是一个库。为了利用它,你需要编写 Java 程序,并在你的 java 程序里面直接集成 Lucene 包。 更坏的情况是,你需要对信息检索有一定程度的理解才能明白 Lucene 是怎么工作的。Lucene 是 很 复杂的。

在上一篇文章中介绍了ElasticSearch的简单使用,接下来记录一下ElasticSearch的查询:

查询所有数据

# 搜索所有数据

es.search(index="my_index",doc_type="test_type")

# 或者

body = {

"query":{

"match_all":{}

}

}

es.search(index="my_index",doc_type="test_type",body=body)term与terms

# term

body = {

"query":{

"term":{

"name":"python"

}

}

}

# 查询name="python"的所有数据

es.search(index="my_index",doc_type="test_type",body=body)

# terms

body = {

"query":{

"terms":{

"name":[

"python","android"

]

}

}

}

# 搜索出name="python"或name="android"的所有数据

es.search(index="my_index",doc_type="test_type",body=body)match与multi_match

# match:匹配name包含python关键字的数据

body = {

"query":{

"match":{

"name":"python"

}

}

}

# 查询name包含python关键字的数据

es.search(index="my_index",doc_type="test_type",body=body)

# multi_match:在name和addr里匹配包含深圳关键字的数据

body = {

"query":{

"multi_match":{

"query":"深圳",

"fields":["name","addr"]

}

}

}

# 查询name和addr包含"深圳"关键字的数据

es.search(index="my_index",doc_type="test_type",body=body)ids

body = {

"query":{

"ids":{

"type":"test_type",

"values":[

"1","2"

]

}

}

}

# 搜索出id为1或2d的所有数据

es.search(index="my_index",doc_type="test_type",body=body)复合查询bool

bool有3类查询关系,must(都满足),should(其中一个满足),must_not(都不满足)

body = {

"query":{

"bool":{

"must":[

{

"term":{

"name":"python"

}

},

{

"term":{

"age":18

}

}

]

}

}

}

# 获取name="python"并且age=18的所有数据

es.search(index="my_index",doc_type="test_type",body=body)切片式查询

body = {

"query":{

"match_all":{}

}

"from":2 # 从第二条数据开始

"size":4 # 获取4条数据

}

# 从第2条数据开始,获取4条数据

es.search(index="my_index",doc_type="test_type",body=body)范围查询

body = {

"query":{

"range":{

"age":{

"gte":18, # >=18

"lte":30 # <=30

}

}

}

}

# 查询18<=age<=30的所有数据

es.search(index="my_index",doc_type="test_type",body=body)前缀查询

body = {

"query":{

"prefix":{

"name":"p"

}

}

}

# 查询前缀为"赵"的所有数据

es.search(index="my_index",doc_type="test_type",body=body)通配符查询

body = {

"query":{

"wildcard":{

"name":"*id"

}

}

}

# 查询name以id为后缀的所有数据

es.search(index="my_index",doc_type="test_type",body=body)排序

body = {

"query":{

"match_all":{}

}

"sort":{

"age":{ # 根据age字段升序排序

"order":"asc" # asc升序,desc降序

}

}

}filter_path

响应过滤

# 只需要获取_id数据,多个条件用逗号隔开

es.search(index="my_index",doc_type="test_type",filter_path=["hits.hits._id"])

# 获取所有数据

es.search(index="my_index",doc_type="test_type",filter_path=["hits.hits._*"])count

执行查询并获取该查询的匹配数

# 获取数据量

es.count(index="my_index",doc_type="test_type")度量类聚合 获取最小值body = {

"query":{

"match_all":{}

},

"aggs":{ # 聚合查询

"min_age":{ # 最小值的key

"min":{ # 最小

"field":"age" # 查询"age"的最小值

}

}

}

}

# 搜索所有数据,并获取age最小的值

es.search(index="my_index",doc_type="test_type",body=body)

获取最大值body = {

"query":{

"match_all":{}

},

"aggs":{ # 聚合查询

"max_age":{ # 最大值的key

"max":{ # 最大

"field":"age" # 查询"age"的最大值

}

}

}

}

# 搜索所有数据,并获取age最大的值

es.search(index="my_index",doc_type="test_type",body=body)

获取和body = {

"query":{

"match_all":{}

},

"aggs":{ # 聚合查询

"sum_age":{ # 和的key

"sum":{ # 和

"field":"age" # 获取所有age的和

}

}

}

}

# 搜索所有数据,并获取所有age的和

es.search(index="my_index",doc_type="test_type",body=body)

获取平均值body = {

"query":{

"match_all":{}

},

"aggs":{ # 聚合查询

"avg_age":{ # 平均值的key

"sum":{ # 平均值

"field":"age" # 获取所有age的平均值

}

}

}

}

# 搜索所有数据,获取所有age的平均值

es.search(index="my_index",doc_type="test_type",body=body)更多的搜索用法:

http://elasticsearch-py.readthedocs.io/en/master/api.html

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对中文源码网的支持。如果你想了解更多相关内容请查看下面相关链接

亲,试试微信扫码分享本页! *^_^*

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值